IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v163y2015icp146-156.html
   My bibliography  Save this article

Benefits of leadtime information and of its combination with demand forecast information

Author

Listed:
  • Iida, Tetsuo

Abstract

This paper studies both the benefits of leadtime information and the interrelationships among demand forecast information, leadtime uncertainty, and leadtime information, for improving inventory control performance. To this end, it explicitly incorporates both leadtime information and demand forecast information into an inventory model although they have conventionally been dealt with individually in the literature. Specifically, it considers a periodic-review inventory model with uncertain leadtimes, in which both leadtime information and demand forecast information are available. The leadtime information is modeled as the information of the arrival of outstanding orders and the demand forecast information as the Martingale Model of Forecast Evolution (MMFE).

Suggested Citation

  • Iida, Tetsuo, 2015. "Benefits of leadtime information and of its combination with demand forecast information," International Journal of Production Economics, Elsevier, vol. 163(C), pages 146-156.
  • Handle: RePEc:eee:proeco:v:163:y:2015:i:c:p:146-156
    DOI: 10.1016/j.ijpe.2015.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315000444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2015.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Altug, Mehmet Sekip & Muharremoglu, Alp, 2011. "Inventory management with advance supply information," International Journal of Production Economics, Elsevier, vol. 129(2), pages 302-313, February.
    2. Robert S. Kaplan, 1970. "A Dynamic Inventory Model with Stochastic Lead Times," Management Science, INFORMS, vol. 16(7), pages 491-507, March.
    3. Fangruo Chen & Jing-Sheng Song, 2001. "Optimal Policies for Multiechelon Inventory Problems with Markov-Modulated Demand," Operations Research, INFORMS, vol. 49(2), pages 226-234, April.
    4. Liberopoulos, George & Koukoumialos, Stelios, 2005. "Tradeoffs between base stock levels, numbers of kanbans, and planned supply lead times in production/inventory systems with advance demand information," International Journal of Production Economics, Elsevier, vol. 96(2), pages 213-232, May.
    5. Richard Ehrhardt, 1984. "( s , S ) Policies for a Dynamic Inventory Model with Stochastic Lead Times," Operations Research, INFORMS, vol. 32(1), pages 121-132, February.
    6. Steven Nahmias, 1979. "Simple Approximations for a Variety of Dynamic Leadtime Lost-Sales Inventory Models," Operations Research, INFORMS, vol. 27(5), pages 904-924, October.
    7. Alp Muharremoglu & John N. Tsitsiklis, 2008. "A Single-Unit Decomposition Approach to Multiechelon Inventory Systems," Operations Research, INFORMS, vol. 56(5), pages 1089-1103, October.
    8. Guillermo Gallego & Özalp Özer, 2001. "Integrating Replenishment Decisions with Advance Demand Information," Management Science, INFORMS, vol. 47(10), pages 1344-1360, October.
    9. Fangruo Chen & Bin Yu, 2005. "Quantifying the Value of Leadtime Information in a Single-Location Inventory System," Manufacturing & Service Operations Management, INFORMS, vol. 7(2), pages 144-151, December.
    10. Stephen C. Graves & David B. Kletter & William B. Hetzel, 1998. "A Dynamic Model for Requirements Planning with Application to Supply Chain Optimization," Operations Research, INFORMS, vol. 46(3-supplem), pages 35-49, June.
    11. Awi Federgruen & Aliza Heching, 1999. "Combined Pricing and Inventory Control Under Uncertainty," Operations Research, INFORMS, vol. 47(3), pages 454-475, June.
    12. Iida, Tetsuo, 2002. "A non-stationary periodic review production-inventory model with uncertain production capacity and uncertain demand," European Journal of Operational Research, Elsevier, vol. 140(3), pages 670-683, August.
    13. L. Beril Toktay & Lawrence M. Wein, 2001. "Analysis of a Forecasting-Production-Inventory System with Stationary Demand," Management Science, INFORMS, vol. 47(9), pages 1268-1281, September.
    14. Jakšič, M. & Fransoo, J.C., 2015. "Optimal inventory management with supply backordering," International Journal of Production Economics, Elsevier, vol. 159(C), pages 254-264.
    15. Yingdong Lu & Jing-Sheng Song & David D. Yao, 2003. "Order Fill Rate, Leadtime Variability, and Advance Demand Information in an Assemble-to-Order System," Operations Research, INFORMS, vol. 51(2), pages 292-308, April.
    16. Jing-Sheng Song & Paul H. Zipkin, 1996. "Inventory Control with Information About Supply Conditions," Management Science, INFORMS, vol. 42(10), pages 1409-1419, October.
    17. Liberopoulos, George, 2008. "On the tradeoff between optimal order-base-stock levels and demand lead-times," European Journal of Operational Research, Elsevier, vol. 190(1), pages 136-155, October.
    18. Lingxiu Dong & Hau L. Lee, 2003. "Optimal Policies and Approximations for a Serial Multiechelon Inventory System with Time-Correlated Demand," Operations Research, INFORMS, vol. 51(6), pages 969-980, December.
    19. Gary D. Eppen & R. Kipp Martin, 1988. "Determining Safety Stock in the Presence of Stochastic Lead Time and Demand," Management Science, INFORMS, vol. 34(11), pages 1380-1390, November.
    20. Gullu, Refik & Onol, Ebru & Erkip, Nesim, 1999. "Analysis of an inventory system under supply uncertainty," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 377-385, March.
    21. Tor Schoenmeyr & Stephen C. Graves, 2009. "Strategic Safety Stocks in Supply Chains with Evolving Forecasts," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 657-673, March.
    22. Rema Hariharan & Paul Zipkin, 1995. "Customer-Order Information, Leadtimes, and Inventories," Management Science, INFORMS, vol. 41(10), pages 1599-1607, October.
    23. Yossi Aviv, 2001. "The Effect of Collaborative Forecasting on Supply Chain Performance," Management Science, INFORMS, vol. 47(10), pages 1326-1343, October.
    24. Frank W. Ciarallo & Ramakrishna Akella & Thomas E. Morton, 1994. "A Periodic Review, Production Planning Model with Uncertain Capacity and Uncertain Demand---Optimality of Extended Myopic Policies," Management Science, INFORMS, vol. 40(3), pages 320-332, March.
    25. Tetsuo Iida & Paul H. Zipkin, 2006. "Approximate Solutions of a Dynamic Forecast-Inventory Model," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 407-425, October.
    26. Guillermo Gallego & Özalp Özer, 2003. "Optimal Replenishment Policies for Multiechelon Inventory Problems Under Advance Demand Information," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 157-175, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barros, Júlio & Cortez, Paulo & Carvalho, M. Sameiro, 2021. "A systematic literature review about dimensioning safety stock under uncertainties and risks in the procurement process," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Taher Ahmadi & Zümbül Atan & Ton de Kok & Ivo Adan, 2019. "Optimal control policies for an inventory system with commitment lead time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(3), pages 193-212, April.
    3. Taher Ahmadi & Zümbül Atan & Ton Kok & Ivo Adan, 2020. "Time-based service constraints for inventory systems with commitment lead time," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 355-395, June.
    4. Sagawa, Juliana Keiko & Mušič, Gašper, 2019. "Towards the use of bond graphs for manufacturing control: Design of controllers," International Journal of Production Economics, Elsevier, vol. 214(C), pages 53-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altug, Mehmet Sekip & Muharremoglu, Alp, 2011. "Inventory management with advance supply information," International Journal of Production Economics, Elsevier, vol. 129(2), pages 302-313, February.
    2. Tetsuo Iida & Paul Zipkin, 2010. "Competition and Cooperation in a Two-Stage Supply Chain with Demand Forecasts," Operations Research, INFORMS, vol. 58(5), pages 1350-1363, October.
    3. Jana Ralfs & Gudrun P. Kiesmüller, 2022. "Inventory management with advance demand information and flexible shipment consolidation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1009-1044, December.
    4. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    5. Liberopoulos, George, 2008. "On the tradeoff between optimal order-base-stock levels and demand lead-times," European Journal of Operational Research, Elsevier, vol. 190(1), pages 136-155, October.
    6. Y. Boulaksil & J. C. Fransoo & T. Tan, 2017. "Capacity reservation and utilization for a manufacturer with uncertain capacity and demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 689-709, July.
    7. Sechan Oh & Özalp Özer, 2013. "Mechanism Design for Capacity Planning Under Dynamic Evolutions of Asymmetric Demand Forecasts," Management Science, INFORMS, vol. 59(4), pages 987-1007, April.
    8. Tong Wang & Beril L. Toktay, 2008. "Inventory Management with Advance Demand Information and Flexible Delivery," Management Science, INFORMS, vol. 54(4), pages 716-732, April.
    9. Van-Anh Truong, 2014. "Approximation Algorithm for the Stochastic Multiperiod Inventory Problem via a Look-Ahead Optimization Approach," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1039-1056, November.
    10. Kaijie Zhu & Ulrich W. Thonemann, 2004. "Modeling the Benefits of Sharing Future Demand Information," Operations Research, INFORMS, vol. 52(1), pages 136-147, February.
    11. Hekimoğlu, Mustafa & van der Laan, Ervin & Dekker, Rommert, 2018. "Markov-modulated analysis of a spare parts system with random lead times and disruption risks," European Journal of Operational Research, Elsevier, vol. 269(3), pages 909-922.
    12. Tong Wang & Atalay Atasu & Mümin Kurtuluş, 2012. "A Multiordering Newsvendor Model with Dynamic Forecast Evolution," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 472-484, July.
    13. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    14. Yimin Wang & Brian Tomlin, 2009. "To wait or not to wait: Optimal ordering under lead time uncertainty and forecast updating," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(8), pages 766-779, December.
    15. Brian M. Lewis & Alan L. Erera & Maciek A. Nowak & White Chelsea C., 2013. "Managing Inventory in Global Supply Chains Facing Port-of-Entry Disruption Risks," Transportation Science, INFORMS, vol. 47(2), pages 162-180, May.
    16. Guillermo Gallego & Özalp Özer, 2003. "Optimal Replenishment Policies for Multiechelon Inventory Problems Under Advance Demand Information," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 157-175, February.
    17. Alp Muharremoglu & Nan Yang, 2010. "Inventory Management with an Exogenous Supply Process," Operations Research, INFORMS, vol. 58(1), pages 111-129, February.
    18. Felix Papier, 2016. "Supply Allocation Under Sequential Advance Demand Information," Operations Research, INFORMS, vol. 64(2), pages 341-361, April.
    19. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    20. Lawrence W. Robinson & James R. Bradley & L. Joseph Thomas, 2001. "Consequences of Order Crossover Under Order-Up-To Inventory Policies," Manufacturing & Service Operations Management, INFORMS, vol. 3(3), pages 175-188, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:163:y:2015:i:c:p:146-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.