IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v45y2020i1p1-14.html
   My bibliography  Save this article

The Euclidean k -Supplier Problem

Author

Listed:
  • Viswanath Nagarajan

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109;)

  • Baruch Schieber

    (IBM T.J. Watson Research Center, Yorktown Heights, New York 10598;)

  • Hadas Shachnai

    (Computer Science Department, Technion, Haifa, Israel 3200003)

Abstract

The k -supplier problem is a fundamental location problem that involves opening k facilities to minimize the maximum distance of any client to an open facility. We consider the k -supplier problem in Euclidean metrics (of arbitrary dimension) and present an algorithm with approximation ratio 1 + 3 < 2.74 . This improves upon the previously known 3-approximation algorithm, which also holds for general metrics. Our result is almost best possible as the Euclidean k -supplier problem is NP-hard to approximate better than a factor of 7 > 2.64 . We also present a nearly linear time algorithm for the Euclidean k -supplier in constant dimensions that achieves an approximation ratio better than three.

Suggested Citation

  • Viswanath Nagarajan & Baruch Schieber & Hadas Shachnai, 2020. "The Euclidean k -Supplier Problem," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 1-14, February.
  • Handle: RePEc:inm:ormoor:v:45:y:2020:i:1:p:1-14
    DOI: 10.1287/moor.20180953
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.20180953
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.20180953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark S. Daskin & Lawrence V. Snyder & Rosemary T. Berger, 2005. "Facility Location in Supply Chain Design," Springer Books, in: André Langevin & Diane Riopel (ed.), Logistics Systems: Design and Optimization, chapter 0, pages 39-65, Springer.
    2. Ravishankar Krishnaswamy & Amit Kumar & Viswanath Nagarajan & Yogish Sabharwal & Barna Saha, 2015. "Facility Location with Matroid or Knapsack Constraints," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 446-459, February.
    3. Dorit S. Hochbaum & David B. Shmoys, 1985. "A Best Possible Heuristic for the k -Center Problem," Mathematics of Operations Research, INFORMS, vol. 10(2), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    2. Barbara Anthony & Vineet Goyal & Anupam Gupta & Viswanath Nagarajan, 2010. "A Plant Location Guide for the Unsure: Approximation Algorithms for Min-Max Location Problems," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 79-101, February.
    3. Mallidis, I. & Vlachos, D. & Dekker, R., 2010. "Greening Supply Chains: Impact on Cost and Design," Econometric Institute Research Papers EI 2010-39a, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Zhuqi Miao & Balabhaskar Balasundaram & Eduardo L. Pasiliao, 2014. "An exact algorithm for the maximum probabilistic clique problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 105-120, July.
    5. Renbo Huang & Guirong Zhuo & Lu Xiong & Shouyi Lu & Wei Tian, 2023. "A Review of Deep Learning-Based Vehicle Motion Prediction for Autonomous Driving," Sustainability, MDPI, vol. 15(20), pages 1-43, October.
    6. Wei Ding & Ke Qiu, 2020. "Approximating the asymmetric p-center problem in parameterized complete digraphs," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 21-35, July.
    7. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    8. Abdul Suleman, 2017. "On ill-conceived initialization in archetypal analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 785-808, December.
    9. Randeep Bhatia & Sudipto Guha & Samir Khuller & Yoram J. Sussmann, 1998. "Facility Location with Dynamic Distance Functions," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 199-217, September.
    10. Yi Xu & Jigen Peng & Wencheng Wang & Binhai Zhu, 2018. "The connected disk covering problem," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 538-554, February.
    11. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    12. Gruia Călinescu & Xiaolang Wang, 2019. "Client assignment problems for latency minimization," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 889-900, April.
    13. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    14. Kobbi Nissim & Rann Smorodinsky & Moshe Tennenholtz, 2018. "Segmentation, Incentives, and Privacy," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1252-1268, November.
    15. Margolis, Joshua T. & Sullivan, Kelly M. & Mason, Scott J. & Magagnotti, Mariah, 2018. "A multi-objective optimization model for designing resilient supply chain networks," International Journal of Production Economics, Elsevier, vol. 204(C), pages 174-185.
    16. Xuqing Bai & Hong Chang & Xueliang Li, 0. "More on limited packings in graphs," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-19.
    17. M. Melo & S. Nickel & F. Saldanha-da-Gama, 2014. "An efficient heuristic approach for a multi-period logistics network redesign problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 80-108, April.
    18. Jimenez, Charlotte & Dauzère-Pérès, Stéphane & Feuillebois, Christian & Pauly, Eric, 2013. "Optimizing the positioning and technological choices of RFID elements for aircraft part identification," European Journal of Operational Research, Elsevier, vol. 227(2), pages 350-357.
    19. Saif Benjaafar & Yanzhi Li & Dongsheng Xu & Samir Elhedhli, 2008. "Demand Allocation in Systems with Multiple Inventory Locations and Multiple Demand Sources," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 43-60, October.
    20. Raphael Kramer & Manuel Iori & Thibaut Vidal, 2020. "Mathematical Models and Search Algorithms for the Capacitated p -Center Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 444-460, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:45:y:2020:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.