IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i9p6591-6609.html
   My bibliography  Save this article

Data-Driven Approximation Schemes for Joint Pricing and Inventory Control Models

Author

Listed:
  • Hanzhang Qin

    (Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • David Simchi-Levi

    (Institute for Data, Systems, and Society and Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Cambridge, Massachusetts 02139; Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Li Wang

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

We study the classic multiperiod joint pricing and inventory control problem in a data-driven setting. In this problem, a retailer makes periodic decisions on the prices and inventory levels of a product that she wishes to sell. The retailer’s objective is to maximize the expected profit over a finite horizon by matching the inventory level with a random demand, which depends on the price in each period. In reality, the demand functions or random noise distributions are usually difficult to know exactly, whereas past demand data are relatively easy to collect. We propose a data-driven approximation algorithm that uses precollected demand data to solve the joint pricing and inventory control problem. We assume that the retailer does not know the noise distributions or the true demand functions; instead, we assume either she has access to demand hypothesis sets and the true demand functions can be represented by nonnegative combinations of candidate functions in the demand hypothesis sets, or the true demand function is generalized linear. We prove the algorithm’s sample complexity bound: the number of data samples needed in each period to guarantee a near-optimal profit is O ( T 6 ϵ − 2 log T ) , where T is the number of periods, and ϵ is the absolute difference between the expected profit of the data-driven policy and the expected optimal profit. In a numerical study, we demonstrate the construction of demand hypothesis sets from data and show that the proposed data-driven algorithm solves the dynamic problem effectively and significantly improves the optimality gaps over the baseline algorithms.

Suggested Citation

  • Hanzhang Qin & David Simchi-Levi & Li Wang, 2022. "Data-Driven Approximation Schemes for Joint Pricing and Inventory Control Models," Management Science, INFORMS, vol. 68(9), pages 6591-6609, September.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:9:p:6591-6609
    DOI: 10.1287/mnsc.2021.4212
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4212
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Awi Federgruen & Aliza Heching, 1999. "Combined Pricing and Inventory Control Under Uncertainty," Operations Research, INFORMS, vol. 47(3), pages 454-475, June.
    2. Gah-Yi Ban, 2020. "Confidence Intervals for Data-Driven Inventory Policies with Demand Censoring," Operations Research, INFORMS, vol. 68(2), pages 309-326, March.
    3. Qi Feng & J. George Shanthikumar, 2018. "Supply and Demand Functions in Inventory Models," Operations Research, INFORMS, vol. 66(1), pages 77-91, 1-2.
    4. Nir Halman & James B. Orlin & David Simchi-Levi, 2012. "Approximating the Nonlinear Newsvendor and Single-Item Stochastic Lot-Sizing Problems When Data Is Given by an Oracle," Operations Research, INFORMS, vol. 60(2), pages 429-446, April.
    5. Nir Halman & Diego Klabjan & Mohamed Mostagir & Jim Orlin & David Simchi-Levi, 2009. "A Fully Polynomial-Time Approximation Scheme for Single-Item Stochastic Inventory Control with Discrete Demand," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 674-685, August.
    6. Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
    7. Nicholas C. Petruzzi & Maqbool Dada, 1999. "Pricing and the Newsvendor Problem: A Review with Extensions," Operations Research, INFORMS, vol. 47(2), pages 183-194, April.
    8. Fernando Bernstein & Yang Li & Kevin Shang, 2016. "A Simple Heuristic for Joint Inventory and Pricing Models with Lead Time and Backorders," Management Science, INFORMS, vol. 62(8), pages 2358-2373, August.
    9. Qi Feng & Sirong Luo & J. George Shanthikumar, 2020. "Integrating Dynamic Pricing with Inventory Decisions Under Lost Sales," Management Science, INFORMS, vol. 66(5), pages 2232-2247, May.
    10. Xin Chen & David Simchi-Levi, 2004. "Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Infinite Horizon Case," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 698-723, August.
    11. Wang Chi Cheung & David Simchi-Levi, 2019. "Sampling-Based Approximation Schemes for Capacitated Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 668-692, May.
    12. Retsef Levi & Robin O. Roundy & David B. Shmoys, 2007. "Provably Near-Optimal Sampling-Based Policies for Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 821-839, November.
    13. T. M. Whitin, 1955. "Inventory Control and Price Theory," Management Science, INFORMS, vol. 2(1), pages 61-68, October.
    14. Boxiao Chen & Xiuli Chao & Hyun-Soo Ahn, 2019. "Coordinating Pricing and Inventory Replenishment with Nonparametric Demand Learning," Operations Research, INFORMS, vol. 67(4), pages 1035-1052, July.
    15. Woonghee Tim Huh & Ganesh Janakiraman, 2008. "( s, S ) Optimality in Joint Inventory-Pricing Control: An Alternate Approach," Operations Research, INFORMS, vol. 56(3), pages 783-790, June.
    16. Xin Chen & David Simchi-Levi, 2004. "Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Finite Horizon Case," Operations Research, INFORMS, vol. 52(6), pages 887-896, December.
    17. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    2. Gurkan, M. Edib & Tunc, Huseyin & Tarim, S. Armagan, 2022. "The joint stochastic lot sizing and pricing problem," Omega, Elsevier, vol. 108(C).
    3. Nan Yang & Renyu Zhang, 2022. "Dynamic pricing and inventory management in the presence of online reviews," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3180-3197, August.
    4. Li, Mengmeng & Mizuno, Shinji, 2022. "Dynamic pricing and inventory management of a dual-channel supply chain under different power structures," European Journal of Operational Research, Elsevier, vol. 303(1), pages 273-285.
    5. Boxiao Chen & David Simchi-Levi & Yining Wang & Yuan Zhou, 2022. "Dynamic Pricing and Inventory Control with Fixed Ordering Cost and Incomplete Demand Information," Management Science, INFORMS, vol. 68(8), pages 5684-5703, August.
    6. Qi Feng & Sirong Luo & J. George Shanthikumar, 2020. "Integrating Dynamic Pricing with Inventory Decisions Under Lost Sales," Management Science, INFORMS, vol. 66(5), pages 2232-2247, May.
    7. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    8. Boxiao Chen & Xiuli Chao & Hyun-Soo Ahn, 2019. "Coordinating Pricing and Inventory Replenishment with Nonparametric Demand Learning," Operations Research, INFORMS, vol. 67(4), pages 1035-1052, July.
    9. Xiong‐zhi Wang & Guo‐qing Wang, 2019. "Integrating dynamic pricing and inventory control for fresh‐agri product under consumer choice," Australian Economic Papers, Wiley Blackwell, vol. 58(1), pages 96-111, March.
    10. Xiting Gong & Youhua (Frank) Chen & Quan Yuan, 2022. "Coordinating Inventory and Pricing Decisions Under Total Minimum Commitment Contracts," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 511-528, February.
    11. Zhan Pang & Frank Y. Chen & Youyi Feng, 2012. "Technical Note---A Note on the Structure of Joint Inventory-Pricing Control with Leadtimes," Operations Research, INFORMS, vol. 60(3), pages 581-587, June.
    12. Li, Yang & Liu, Feng, 2021. "Joint inventory and pricing control with lagged price responses," International Journal of Production Economics, Elsevier, vol. 241(C).
    13. Yin, Rui & Rajaram, Kumar, 2007. "Joint pricing and inventory control with a Markovian demand model," European Journal of Operational Research, Elsevier, vol. 182(1), pages 113-126, October.
    14. Lap Mui Ann Chan & David Simchi-Levi & Julie Swann, 2006. "Pricing, Production, and Inventory Policies for Manufacturing with Stochastic Demand and Discretionary Sales," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 149-168, January.
    15. Youhua (Frank) Chen & Ye Lu & Minghui Xu, 2012. "Optimal inventory control policy for periodic‐review inventory systems with inventory‐level‐dependent demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 430-440, September.
    16. Georgia Perakis & Melvyn Sim & Qinshen Tang & Peng Xiong, 2023. "Robust Pricing and Production with Information Partitioning and Adaptation," Management Science, INFORMS, vol. 69(3), pages 1398-1419, March.
    17. Ru, Jun & Wang, Yunzeng, 2010. "Consignment contracting: Who should control inventory in the supply chain?," European Journal of Operational Research, Elsevier, vol. 201(3), pages 760-769, March.
    18. Francis de Véricourt & Miguel Sousa Lobo, 2009. "Resource and Revenue Management in Nonprofit Operations," Operations Research, INFORMS, vol. 57(5), pages 1114-1128, October.
    19. Fernando Bernstein & Yang Li & Kevin Shang, 2016. "A Simple Heuristic for Joint Inventory and Pricing Models with Lead Time and Backorders," Management Science, INFORMS, vol. 62(8), pages 2358-2373, August.
    20. Yongbo Xiao, 2018. "Dynamic pricing and replenishment: Optimality, bounds, and asymptotics," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(1), pages 3-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:9:p:6591-6609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.