IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v62y2016i6p1687-1706.html
   My bibliography  Save this article

Reputation Transferability in Online Labor Markets

Author

Listed:
  • Marios Kokkodis

    (Department of Information, Operations, and Management Sciences, Leonard N. Stern School of Business, New York University, New York, New York 10012)

  • Panagiotis G. Ipeirotis

    (Department of Information, Operations, and Management Sciences, Leonard N. Stern School of Business, New York University, New York, New York 10012)

Abstract

Online workplaces such as oDesk, Amazon Mechanical Turk, and TaskRabbit have been growing in importance over the last few years. In such markets, employers post tasks on which remote contractors work and deliver the product of their work online. As in most online marketplaces, reputation mechanisms play a very important role in facilitating transactions, since they instill trust and are often predictive of the employer’s future satisfaction. However, labor markets are usually highly heterogeneous in terms of available task categories; in such scenarios, past performance may not be an accurate signal of future performance. To account for this natural heterogeneity, in this work, we build models that predict the performance of a worker based on prior, category-specific feedback. Our models assume that each worker has a category-specific quality, which is latent and not directly observable; what is observable, though, is the set of feedback ratings of the worker and of other contractors with similar work histories. Based on this information, we provide a series of models of increasing complexity that successfully estimate the worker’s quality. We start by building a binomial model and a multinomial model under the implicit assumption that the latent qualities of the workers are static. Next, we remove this assumption, and we build linear dynamic systems that capture the evolution of these latent qualities over time. We evaluate our models on a large corpus of over a million transactions (completed tasks) from oDesk, an online labor market with hundreds of millions of dollars in transaction volume. Our results show an improved accuracy of up to 25% compared to feedback baselines and significant improvement over the commonly used collaborative filtering approach. Our study clearly illustrates that reputation systems should present different reputation scores, depending on the context in which the worker has been previously evaluated and the job for which the worker is applying. This paper was accepted by Lorin Hitt, information systems.

Suggested Citation

  • Marios Kokkodis & Panagiotis G. Ipeirotis, 2016. "Reputation Transferability in Online Labor Markets," Management Science, INFORMS, vol. 62(6), pages 1687-1706, June.
  • Handle: RePEc:inm:ormnsc:v:62:y:2016:i:6:p:1687-1706
    DOI: 10.1287/mnsc.2015.2217
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2015.2217
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2015.2217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Horton & David Rand & Richard Zeckhauser, 2011. "The online laboratory: conducting experiments in a real labor market," Experimental Economics, Springer;Economic Science Association, vol. 14(3), pages 399-425, September.
    2. Ajay Agrawal & John Horton & Nicola Lacetera & Elizabeth Lyons, 2015. "Digitization and the Contract Labor Market: A Research Agenda," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 219-250, National Bureau of Economic Research, Inc.
    3. Gary E. Bolton & Elena Katok & Axel Ockenfels, 2004. "How Effective Are Electronic Reputation Mechanisms? An Experimental Investigation," Management Science, INFORMS, vol. 50(11), pages 1587-1602, November.
    4. Erik Brynjolfsson & Michael D. Smith, 2000. "Frictionless Commerce? A Comparison of Internet and Conventional Retailers," Management Science, INFORMS, vol. 46(4), pages 563-585, April.
    5. Nelson, Phillip, 1970. "Information and Consumer Behavior," Journal of Political Economy, University of Chicago Press, vol. 78(2), pages 311-329, March-Apr.
    6. Dellarocas, Chrysanthos, 2003. "The Digitization of Word-of-mouth: Promise and Challenges of Online Feedback Mechanisms," Working papers 4296-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    7. Paul Resnick & Richard Zeckhauser & John Swanson & Kate Lockwood, 2006. "The value of reputation on eBay: A controlled experiment," Experimental Economics, Springer;Economic Science Association, vol. 9(2), pages 79-101, June.
    8. Eli M. Snir & Lorin M. Hitt, 2003. "Costly Bidding in Online Markets for IT Services," Management Science, INFORMS, vol. 49(11), pages 1504-1520, November.
    9. Chrysanthos Dellarocas, 2003. "The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms," Management Science, INFORMS, vol. 49(10), pages 1407-1424, October.
    10. Robert T. Clemen & Robert L. Winkler, 1990. "Unanimity and Compromise Among Probability Forecasters," Management Science, INFORMS, vol. 36(7), pages 767-779, July.
    11. Kinshuk Jerath & Peter S. Fader & Bruce G. S. Hardie, 2011. "New Perspectives on Customer "Death" Using a Generalization of the Pareto/NBD Model," Marketing Science, INFORMS, vol. 30(5), pages 866-880, September.
    12. Christina Aperjis & Ramesh Johari, 2010. "Optimal Windows for Aggregating Ratings in Electronic Marketplaces," Management Science, INFORMS, vol. 56(5), pages 864-880, May.
    13. Yannis Bakos & Chrysanthos Dellarocas, 2011. "Cooperation Without Enforcement? A Comparative Analysis of Litigation and Online Reputation as Quality Assurance Mechanisms," Management Science, INFORMS, vol. 57(11), pages 1944-1962, November.
    14. Berinsky, Adam J. & Huber, Gregory A. & Lenz, Gabriel S., 2012. "Evaluating Online Labor Markets for Experimental Research: Amazon.com's Mechanical Turk," Political Analysis, Cambridge University Press, vol. 20(3), pages 351-368, July.
    15. Amanda Pallais, 2014. "Inefficient Hiring in Entry-Level Labor Markets," American Economic Review, American Economic Association, vol. 104(11), pages 3565-3599, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Moreno & Christian Terwiesch, 2014. "Doing Business with Strangers: Reputation in Online Service Marketplaces," Information Systems Research, INFORMS, vol. 25(4), pages 865-886, December.
    2. Mingfeng Lin & Yong Liu & Siva Viswanathan, 2018. "Effectiveness of Reputation in Contracting for Customized Production: Evidence from Online Labor Markets," Management Science, INFORMS, vol. 64(1), pages 345-359, January.
    3. Jason Chan & Jing Wang, 2018. "Hiring Preferences in Online Labor Markets: Evidence of a Female Hiring Bias," Management Science, INFORMS, vol. 64(7), pages 2973-2994, July.
    4. Apostolos Filippas & John Horton & Joseph M. Golden, 2017. "Reputation in the Long-Run," CESifo Working Paper Series 6750, CESifo.
    5. Estrella Gomez-Herrera & Bertin Martens & Frank Muller-Langer, 2017. "Trade, competition and welfare in global online labour markets: A "gig economy" case study," JRC Working Papers on Digital Economy 2017-05, Joint Research Centre.
    6. Judy E. Scott & Dawn G. Gregg & Jae Hoon Choi, 2015. "Lemon complaints: When online auctions go sour," Information Systems Frontiers, Springer, vol. 17(1), pages 177-191, February.
    7. Lingfang (Ivy) Li & Steven Tadelis & Xiaolan Zhou, 2020. "Buying reputation as a signal of quality: Evidence from an online marketplace," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 965-988, December.
    8. Mingfeng Lin & Nagpurnanand R. Prabhala & Siva Viswanathan, 2013. "Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending," Management Science, INFORMS, vol. 59(1), pages 17-35, August.
    9. Gesche, Tobias, 2018. "Reference Price Shifts and Customer Antagonism: Evidence from Reviews for Online Auctions," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181650, Verein für Socialpolitik / German Economic Association.
    10. Naoki Masuda & Mitsuhiro Nakamura, 2012. "Coevolution of Trustful Buyers and Cooperative Sellers in the Trust Game," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
    11. Rense Corten & Judith Kas & Timm Teubner & Martijn Arets, 2023. "The role of contextual and contentual signals for online trust: Evidence from a crowd work experiment," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-17, December.
    12. David Masclet & Thierry Pénard, 2008. "Is the ebay feedback system really efficient ? an experimental study," Economics Working Paper Archive (University of Rennes & University of Caen) 200803, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    13. Krügel, Jan Philipp & Paetzel, Fabian, 2024. "The impact of fraud on reputation systems," Games and Economic Behavior, Elsevier, vol. 144(C), pages 329-354.
    14. Luís Cabral & Lingfang (Ivy) Li, 2015. "A Dollar for Your Thoughts: Feedback-Conditional Rebates on eBay," Management Science, INFORMS, vol. 61(9), pages 2052-2063, September.
    15. Li, Lingfang (Ivy) & Xiao, Erte, 2010. "Money Talks? An Experimental Study of Rebate in Reputation System Design," MPRA Paper 22401, University Library of Munich, Germany.
    16. Schneider, Frank, 2008. "Multiple criteria decision making in application layer networks," Bayreuth Reports on Information Systems Management 36, University of Bayreuth, Chair of Information Systems Management.
    17. Yili Hong & Paul A. Pavlou, 2017. "On Buyer Selection of Service Providers in Online Outsourcing Platforms for IT Services," Information Systems Research, INFORMS, vol. 28(3), pages 547-562, September.
    18. Dirk Engelmann & Jeff Frank & Alexander K. Koch & Marieta Valente, 2023. "Second‐chance offers and buyer reputation systems: theory and evidence on auctions with default," RAND Journal of Economics, RAND Corporation, vol. 54(3), pages 484-511, September.
    19. Belleflamme,Paul & Peitz,Martin, 2015. "Industrial Organization," Cambridge Books, Cambridge University Press, number 9781107687899, January.
    20. Gong, Binglin & Yang, Chun-Lei, 2019. "Cooperation through indirect reciprocity: The impact of higher-order history," Games and Economic Behavior, Elsevier, vol. 118(C), pages 316-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:62:y:2016:i:6:p:1687-1706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.