IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v41y1995i3p555-559.html
   My bibliography  Save this article

The Unpredictability of Standard Back Propagation Neural Networks in Classification Applications

Author

Listed:
  • Shouhong Wang

    (Faculty of Business, University of New Brunswick (SJ), Saint John, New Brunswick, Canada E2L 4L5)

Abstract

This note offers an extension of Tam and Kiang (Tam, K. Y., M. Y. Kiang. 1992. Management applications of neural networks: The case of bank failure predictions. Management Sci. 38(7) 926--947.). First the weakness of the standard back propagation neural network learning algorithm is discussed, and then a warning is issued regarding applications of artificial neural networks in the management science field. Also suggested is a possible way of improving the performance of neural networks in managerial applications.

Suggested Citation

  • Shouhong Wang, 1995. "The Unpredictability of Standard Back Propagation Neural Networks in Classification Applications," Management Science, INFORMS, vol. 41(3), pages 555-559, March.
  • Handle: RePEc:inm:ormnsc:v:41:y:1995:i:3:p:555-559
    DOI: 10.1287/mnsc.41.3.555
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.41.3.555
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.41.3.555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    2. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    3. Mostafa, Mohamed M. & El-Masry, Ahmed A., 2013. "Citizens as consumers: Profiling e-government services’ users in Egypt via data mining techniques," International Journal of Information Management, Elsevier, vol. 33(4), pages 627-641.
    4. Sexton, Randall S. & Alidaee, Bahram & Dorsey, Robert E. & Johnson, John D., 1998. "Global optimization for artificial neural networks: A tabu search application," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 570-584, April.
    5. Mostafa, Mohamed M. & Nataraajan, Rajan, 2009. "A neuro-computational intelligence analysis of the ecological footprint of nations," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3516-3531, July.
    6. Sexton, Randall S. & Dorsey, Robert E. & Johnson, John D., 1999. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," European Journal of Operational Research, Elsevier, vol. 114(3), pages 589-601, May.
    7. Misiunas, Nicholas & Oztekin, Asil & Chen, Yao & Chandra, Kavitha, 2016. "DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status," Omega, Elsevier, vol. 58(C), pages 46-54.
    8. Randall S. Sexton & Naheel A. Sikander, 2001. "Data mining using a genetic algorithm‐trained neural network," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(4), pages 201-210, December.
    9. Sexton, Randall S. & McMurtrey, Shannon & Cleavenger, Dean, 2006. "Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 1009-1018, February.
    10. Mostafa, Mohamed M. & El-Masry, Ahmed A., 2016. "Oil price forecasting using gene expression programming and artificial neural networks," Economic Modelling, Elsevier, vol. 54(C), pages 40-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:41:y:1995:i:3:p:555-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.