IDEAS home Printed from
   My bibliography  Save this article

Should Scoring Rules be "Effective"?


  • Robert F. Nau

    (A. B. Freeman School of Business, Tulane University, New Orleans, Louisiana 70118)


A scoring rule is a reward function for eliciting or evaluating forecasts expressed as discrete or continuous probability distributions. A rule is strictly proper if it encourages the forecaster to state his true subjective probabilities, and effective if it is associated with a metric on the set of probability distributions. Recently, the property of effectiveness (which is stronger than strict properness) has been proposed as a desideratum for scoring rules for continuous forecasts, for reasons of "monotonicity" in keeping the forecaster close to his true probabilities, since in practice the forecast must be chosen from a low-dimensional set of "admissible" distributions. It is shown in this paper that what effectiveness implies, beyond strict properness, is not a monotonicity property but a transitivity property, which is difficult to justify behaviorally. The logarithmic scoring rule is shown to violate the transitivity property, and hence is not effective. The L 1 and L \infty metrics are shown to allow no effective scoring rules. Some potential difficulties in interpreting admissible forecasts are also discussed.

Suggested Citation

  • Robert F. Nau, 1985. "Should Scoring Rules be "Effective"?," Management Science, INFORMS, vol. 31(5), pages 527-535, May.
  • Handle: RePEc:inm:ormnsc:v:31:y:1985:i:5:p:527-535

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Ian I. Mitroff, 1972. "The Myth of Objectivity OR Why Science Needs a New Psychology of Science," Management Science, INFORMS, vol. 18(10), pages 613-618, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Borgonovo, Emanuele & Marinacci, Massimo, 2015. "Decision analysis under ambiguity," European Journal of Operational Research, Elsevier, vol. 244(3), pages 823-836.
    2. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498,, revised Feb 2017.
    3. Lambert, Nicolas S. & Langford, John & Wortman Vaughan, Jennifer & Chen, Yiling & Reeves, Daniel M. & Shoham, Yoav & Pennock, David M., 2015. "An axiomatic characterization of wagering mechanisms," Journal of Economic Theory, Elsevier, vol. 156(C), pages 389-416.
    4. Freddy Delbaen & Fabio Bellini & Valeria Bignozzi & Johanna F. Ziegel, 2016. "Risk measures with the CxLS property," Finance and Stochastics, Springer, vol. 20(2), pages 433-453, April.
    5. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Kr├╝ger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    6. Nolan Miller & Paul Resnick & Richard Zeckhauser, 2005. "Eliciting Informative Feedback: The Peer-Prediction Method," Management Science, INFORMS, vol. 51(9), pages 1359-1373, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:31:y:1985:i:5:p:527-535. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.