IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v47y2017i3p244-259.html
   My bibliography  Save this article

Tri-Vizor Uses an Efficient Algorithm to Identify Collaborative Shipping Opportunities

Author

Listed:
  • Stefan Creemers

    (IÉSEG School of Management, 59000 Lille, France; and Research Center for Operations Management, KU Leuven, 3000 Leuven, Belgium)

  • Gert Woumans

    (IÉSEG School of Management, 59000 Lille, France; and Research Center for Operations Management, KU Leuven, 3000 Leuven, Belgium)

  • Robert Boute

    (Technology and Operations Management Area, Vlerick Business School, 9000 Ghent, Belgium; and Research Center for Operations Management, KU Leuven, 3000 Leuven, Belgium)

  • Jeroen Beliën

    (Research Center for Information Management, Modelling and Simulation, KU Leuven, 1000 Brussels, Belgium)

Abstract

Collaborative shipping programs, whereby companies bundle their transport loads, are a growing trend in logistics. By bundling shipments with other partners, available space in truck hauls for one company can be used to transport shipments for other companies. The benefits are reduced logistics costs and a lower carbon footprint. Although the advantages of collaborative shipping are clear, finding suitable collaboration partners is a major impediment. In this article we present a tool that enables the quick identification of potential partners based on their geographical compatibility, even when the database of shipment lanes is very large. The tool allows the detection of bundling, back-hauling, and round-trip opportunities, as well as “collect-and-or-drop” opportunities in which shipments are collected and (or) dropped off en route. Tri-Vizor, a facilitator and orchestrator of horizontal logistics partnerships, is currently using this tool. Any company that is looking for collaborative shipping partners would also find it valuable. For Tri-Vizor, whose database has grown to over 130,000 shipment lanes, this tool has become an indispensable asset in detecting collaborative shipping opportunities.

Suggested Citation

  • Stefan Creemers & Gert Woumans & Robert Boute & Jeroen Beliën, 2017. "Tri-Vizor Uses an Efficient Algorithm to Identify Collaborative Shipping Opportunities," Interfaces, INFORMS, vol. 47(3), pages 244-259, June.
  • Handle: RePEc:inm:orinte:v:47:y:2017:i:3:p:244-259
    DOI: 10.1287/inte.2016.0878
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2016.0878
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2016.0878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pan, Shenle & Ballot, Eric & Fontane, Frédéric, 2013. "The reduction of greenhouse gas emissions from freight transport by pooling supply chains," International Journal of Production Economics, Elsevier, vol. 143(1), pages 86-94.
    2. Shenle Pan & Eric Ballot & Frédéric Fontane, 2013. "The reduction of greenhouse gas emissions from freight transport by pooling supply chains," Post-Print hal-00733678, HAL.
    3. Vanovermeire, Christine & Sörensen, Kenneth, 2014. "Measuring and rewarding flexibility in collaborative distribution, including two-partner coalitions," European Journal of Operational Research, Elsevier, vol. 239(1), pages 157-165.
    4. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Hacardiaux & Jean-Sébastien Tancrez, 2020. "Assessing the environmental benefits of horizontal cooperation using a location-inventory model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(4), pages 1363-1387, December.
    2. Kant, Goos & van Beest, Ilja & Brekelmans, Ruud, 2021. "A Holistic Approach to Identify Collaborative Shipping Opportunities," Other publications TiSEM 4b65a129-4093-40b3-82b7-2, Tilburg University, School of Economics and Management.
    3. De Moor, Bram J. & Creemers, Stefan & Boute, Robert N., 2023. "Breaking truck dominance in supply chains: Proactive freight consolidation and modal split transport," International Journal of Production Economics, Elsevier, vol. 257(C).
    4. Ben Jouida, Sihem & Guajardo, Mario & Klibi, Walid & Krichen, Saoussen, 2021. "Profit maximizing coalitions with shared capacities in distribution networks," European Journal of Operational Research, Elsevier, vol. 288(2), pages 480-495.
    5. Öner, Nihat & Kuyzu, Gültekin, 2021. "Core stable coalition selection in collaborative truckload transportation procurement," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    6. Boshuai Zhao & Roel Leus, 2022. "An improved decomposition-based heuristic for truck platooning," Papers 2210.05562, arXiv.org, revised Feb 2023.
    7. Shenle Pan & Damien Trentesaux & Eric Ballot & George Q. Huang, 2019. "Horizontal collaborative transport: survey of solutions and practical implementation issues," Post-Print hal-02008934, HAL.
    8. Thomas Hacardiaux & Christof Defryn & Jean-Sébastien Tancrez & Lotte Verdonck, 2022. "Balancing partner preferences for logistics costs and carbon footprint in a horizontal cooperation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 121-153, March.
    9. Creemers, Stefan & Boute, Robert, 2022. "The joint replenishment problem: Optimal policy and exact evaluation method," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1175-1188.
    10. Hacardiaux, Thomas & Defryn, Christof & Tancrez, Jean-Sébastien & Verdonck, Lotte, 2020. "Balancing partner preferences for logistics costs and carbon footprint in a horizontal cooperation," Research Memorandum 002, Maastricht University, Graduate School of Business and Economics (GSBE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mrabti, Nassim & Hamani, Nadia & Boulaksil, Youssef & Amine Gargouri, Mohamed & Delahoche, Laurent, 2022. "A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Nassim Mrabti & Nadia Hamani & Laurent Delahoche, 2022. "A Comprehensive Literature Review on Sustainable Horizontal Collaboration," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    3. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    4. Jan Chocholac & Roman Hruska & Stanislav Machalik & Dana Sommerauerova & Petr Sohajek, 2021. "Framework for Greenhouse Gas Emissions Calculations in the Context of Road Freight Transport for the Automotive Industry," Sustainability, MDPI, vol. 13(7), pages 1-28, April.
    5. Manuel Sanchez & Lorena Pradenas & Jean-Christophe Deschamps & Victor Parada, 2016. "Reducing the carbon footprint in a vehicle routing problem by pooling resources from different companies," Netnomics, Springer, vol. 17(1), pages 29-45, July.
    6. Y Bouchery & Jan C Fransoo, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," Post-Print hal-01954452, HAL.
    7. Yi Zheng & Huchang Liao & Xue Yang, 2016. "Stochastic Pricing and Order Model with Transportation Mode Selection for Low-Carbon Retailers," Sustainability, MDPI, vol. 8(1), pages 1-19, January.
    8. Jidong Guo & Qiuhong Zhao & Menghao Xi, 2022. "Sustainable Urban Logistics Distribution Network Planning with Carbon Tax," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    9. De Moor, Bram J. & Creemers, Stefan & Boute, Robert N., 2023. "Breaking truck dominance in supply chains: Proactive freight consolidation and modal split transport," International Journal of Production Economics, Elsevier, vol. 257(C).
    10. Jianming Yao, 2017. "Optimisation of one-stop delivery scheduling in online shopping based on the physical Internet," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 358-376, January.
    11. Zhao, Rui & Zhou, Xiao & Han, Jiaojie & Liu, Chengliang, 2016. "For the sustainable performance of the carbon reduction labeling policies under an evolutionary game simulation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 262-274.
    12. Meng, Xiaoge & Yao, Zhong & Nie, Jiajia & Zhao, Yingxue & Li, Zenglu, 2018. "Low-carbon product selection with carbon tax and competition: Effects of the power structure," International Journal of Production Economics, Elsevier, vol. 200(C), pages 224-230.
    13. Jaehyung An & Jinho Lee, 2018. "A Newsvendor Non-Cooperative Game for Efficient Allocation of Carbon Emissions," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    14. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    15. Nchofoung, Tii N. & Asongu, Simplice A., 2022. "Effects of infrastructures on environmental quality contingent on trade openness and governance dynamics in Africa," Renewable Energy, Elsevier, vol. 189(C), pages 152-163.
    16. X.J. Wang & S.H. Choi, 2016. "Impacts of carbon emission reduction mechanisms on uncertain make-to-order manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3311-3328, June.
    17. Bouchery, Yann & Ghaffari, Asma & Jemai, Zied & Tan, Tarkan, 2017. "Impact of coordination on costs and carbon emissions for a two-echelon serial economic order quantity problem," European Journal of Operational Research, Elsevier, vol. 260(2), pages 520-533.
    18. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    19. Y Bouchery & Asma Ghaffari & Zied Jemai & Jan C Fransoo, 2016. "Sustainable transportation and order quantity: insights from multiobjective optimization," Post-Print hal-01954465, HAL.
    20. Christine Tawfik & Sabine Limbourg, 2018. "Pricing Problems in Intermodal Freight Transport: Research Overview and Prospects," Sustainability, MDPI, vol. 10(9), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:47:y:2017:i:3:p:244-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.