IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v28y1998i4p1-12.html
   My bibliography  Save this article

Santa Fe Railway Uses an Operating-Plan Model to Improve Its Service Design

Author

Listed:
  • Michael F. Gorman

    (Burlington Northern Santa Fe Corporation, 3017 Lou Menk Drive, Fort Worth, Texas 76131)

Abstract

Santa Fe Railway's intermodal business unit has developed an innovative approach to designing its service offerings. The operating-plan model (OPM) minimizes the schedule-related costs of service subject to rail-operating capabilities while meeting customers' expectations for service. The algorithm produces a weekly train timetable and assigns traffic to trains. Because of the problem's size and complexity, a combination of genetic and tabu searches is used to search for successively better operating plans. The OPM shows the potential to improve global service by four percent while reducing costs by six percent over the existing operating plan. Santa Fe Intermodal has realized savings by applying the OPM to more narrowly focused problems.

Suggested Citation

  • Michael F. Gorman, 1998. "Santa Fe Railway Uses an Operating-Plan Model to Improve Its Service Design," Interfaces, INFORMS, vol. 28(4), pages 1-12, August.
  • Handle: RePEc:inm:orinte:v:28:y:1998:i:4:p:1-12
    DOI: 10.1287/inte.28.4.1
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.28.4.1
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.28.4.1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arjang A. Assad, 1982. "A Class of Train-Scheduling Problems," Transportation Science, INFORMS, vol. 16(3), pages 281-310, August.
    2. Keaton, Mark H., 1989. "Designing optimal railroad operating plans: Lagrangian relaxation and heuristic approaches," Transportation Research Part B: Methodological, Elsevier, vol. 23(6), pages 415-431, December.
    3. Mark H. Keaton, 1992. "Designing Railroad Operating Plans: A Dual Adjustment Method for Implementing Lagrangian Relaxation," Transportation Science, INFORMS, vol. 26(4), pages 263-279, November.
    4. Haghani, Ali E., 1989. "Formulation and solution of a combined train routing and makeup, and empty car distribution model," Transportation Research Part B: Methodological, Elsevier, vol. 23(6), pages 433-452, December.
    5. Michael Francis Gorman, 1998. "An application of genetic and tabu searches to the freight railroad operating plan problem," Annals of Operations Research, Springer, vol. 78(0), pages 51-69, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Li & Sridhar Tayur, 2005. "Medium-Term Pricing and Operations Planning in Intermodal Transportation," Transportation Science, INFORMS, vol. 39(1), pages 73-86, February.
    2. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    3. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    4. Phil Ireland & Rod Case & John Fallis & Carl Van Dyke & Jason Kuehn & Marc Meketon, 2004. "The Canadian Pacific Railway Transforms Operations by Using Models to Develop Its Operating Plans," Interfaces, INFORMS, vol. 34(1), pages 5-14, February.
    5. Blum, Jeremy & Eskandarian, Azim, 2002. "Enhancing intelligent agent collaboration for flow optimization of railroad traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(10), pages 919-930, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    2. Jin, Jian Gang & Zhao, Jun & Lee, Der-Horng, 2013. "A column generation based approach for the Train Network Design Optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 1-17.
    3. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    4. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    5. Chen, Chongshuang & Dollevoet, Twan & Zhao, Jun, 2018. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 1-30.
    6. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    7. Boliang Lin & Jingsong Duan & Jiaxi Wang & Min Sun & Wengao Peng & Chang Liu & Jie Xiao & Siqi Liu & Jianping Wu, 2018. "A study of the car-to-train assignment problem for rail express cargos in the scheduled and unscheduled train services network," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
    8. Khaled, Abdullah A. & Jin, Mingzhou & Clarke, David B. & Hoque, Mohammad A., 2015. "Train design and routing optimization for evaluating criticality of freight railroad infrastructures," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 71-84.
    9. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    10. Phil Ireland & Rod Case & John Fallis & Carl Van Dyke & Jason Kuehn & Marc Meketon, 2004. "The Canadian Pacific Railway Transforms Operations by Using Models to Develop Its Operating Plans," Interfaces, INFORMS, vol. 34(1), pages 5-14, February.
    11. Alena Otto & Erwin Pesch, 2017. "Operation of shunting yards: train-to-yard assignment problem," Journal of Business Economics, Springer, vol. 87(4), pages 465-486, May.
    12. Zhimei Wang & Avishai Ceder, 2017. "Efficient design of freight train operation with double-hump yards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1600-1619, December.
    13. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    14. Lin, Bo-Liang & Wang, Zhi-Mei & Ji, Li-Jun & Tian, Ya-Ming & Zhou, Guo-Qing, 2012. "Optimizing the freight train connection service network of a large-scale rail system," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 649-667.
    15. Chen, C. & Dollevoet, T.A.B. & Zhao, J., 2017. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Econometric Institute Research Papers EI-2017-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Xiao, Jie & Pachl, Joern & Lin, Boliang & Wang, Jiaxi, 2018. "Solving the block-to-train assignment problem using the heuristic approach based on the genetic algorithm and tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 148-171.
    17. Kaj Holmberg & Martin Joborn & Jan T. Lundgren, 1998. "Improved Empty Freight Car Distribution," Transportation Science, INFORMS, vol. 32(2), pages 163-173, May.
    18. Boliang Lin & Xingkui Li & Zexi Zhang & Yinan Zhao, 2019. "Optimizing Transport Scheme of High Value-Added Shipments in Regions without Express Train Services," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    19. Alena Otto & Erwin Pesch, 2019. "The train-to-yard assignment problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 549-580, June.
    20. J Liu & R K Ahuja & G Şahin, 2008. "Optimal network configuration and capacity expansion of railroads," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 911-920, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:28:y:1998:i:4:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.