IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y2020i2p408-427.html
   My bibliography  Save this article

Relative Robust and Adaptive Optimization

Author

Listed:
  • Dimitris Bertsimas

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Iain Dunning

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

Robust optimization has emerged in the operations research literature as a tractable and practical way to model uncertainty in optimization problems. Early approaches focused on relative worst-case objective functions, where the value of a solution is measured versus the best-possible solution over an uncertainty set of scenarios. However, over the past ten years the focus has primarily been on absolute worst-case objective functions, which have generally been considered to be more tractable. In this paper, we demonstrate that for many problems of interest, including some adaptive robust optimization problems, that considering relative objective functions does not significantly increase the computational cost over absolute objective functions. We use combinations of absolute and relative worst-case objective functions to find Pareto-efficient solutions that combine aspects of both, which suggests an approach to distinguish between otherwise very similar robust solutions. We provide reformulation and cutting plane approaches for these problems and demonstrate their efficacy with experiments on minimum-cost flow, inventory control, and facility location problems. These case studies show that solutions corresponding to relative objective functions may be a better match for a decision maker’s risk preferences than absolute.

Suggested Citation

  • Dimitris Bertsimas & Iain Dunning, 2020. "Relative Robust and Adaptive Optimization," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 408-427, April.
  • Handle: RePEc:inm:orijoc:v:32:y:2020:i:2:p:408-427
    DOI: 10.1287/ijoc.2018.0860
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0860
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Jochen Gorski & Frank Pfeuffer & Kathrin Klamroth, 2007. "Biconvex sets and optimization with biconvex functions: a survey and extensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 373-407, December.
    3. Vairaktarakis, George L., 2000. "Robust multi-item newsboy models with a budget constraint," International Journal of Production Economics, Elsevier, vol. 66(3), pages 213-226, July.
    4. H E Mausser & M Laguna, 1999. "Minimising the maximum relative regret for linear programmes with interval objective function coefficients," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1063-1070, October.
    5. Dimitris Bertsimas & Iain Dunning, 2016. "Multistage Robust Mixed-Integer Optimization with Adaptive Partitions," Operations Research, INFORMS, vol. 64(4), pages 980-998, August.
    6. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    7. Mausser, Helmut E. & Laguna, Manuel, 1999. "A heuristic to minimax absolute regret for linear programs with interval objective function coefficients," European Journal of Operational Research, Elsevier, vol. 117(1), pages 157-174, August.
    8. Georgia Perakis & Guillaume Roels, 2010. "Robust Controls for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 56-76, November.
    9. T. Assavapokee & M. J. Realff & J. C. Ammons, 2008. "Min-Max Regret Robust Optimization Approach on Interval Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 297-316, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Chen & Weijun Xie, 2021. "Regret in the Newsvendor Model with Demand and Yield Randomness," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4176-4197, November.
    2. Mo, Baichuan & Koutsopoulos, Haris N. & Shen, Zuo-Jun Max & Zhao, Jinhua, 2023. "Robust path recommendations during public transit disruptions under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 82-107.
    3. Guo, Xiaotong & Caros, Nicholas S. & Zhao, Jinhua, 2021. "Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 161-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Maggioni & Fabrizio Dabbene & Georg Ch. Pflug, 2025. "Sampling methods for multi-stage robust optimization problems," Annals of Operations Research, Springer, vol. 347(3), pages 1385-1423, April.
    2. Yu, Pengfei & Gao, Ruotian & Xing, Wenxun, 2021. "Maximizing perturbation radii for robust convex quadratically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 293(1), pages 50-64.
    3. Amadeu Almeida Coco & João Carlos Abreu Júnior & Thiago F. Noronha & Andréa Cynthia Santos, 2017. "Erratum to: An integer linear programming formulation and heuristics for the minmax relative regret robust shortest path problem," Journal of Global Optimization, Springer, vol. 68(2), pages 463-466, June.
    4. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    5. Rozakis, Stelios, 2011. "Impacts of flatter rates and environmental top-ups in Greece: A novel mathematical modeling approach," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(2).
    6. Pejman Peykani & Roya Soltani & Cristina Tanasescu & Seyed Ehsan Shojaie & Alireza Jandaghian, 2025. "The Robust Malmquist Productivity Index: A Framework for Measuring Productivity Changes over Time Under Uncertainty," Mathematics, MDPI, vol. 13(11), pages 1-27, May.
    7. Zhao, Yujie & Zhou, Hong & Leus, Roel, 2024. "Decision timing, information inference, and information sharing: A robust supply chain game with two-way information asymmetry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    8. Cohen, Izack & Postek, Krzysztof & Shtern, Shimrit, 2023. "An adaptive robust optimization model for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 306(1), pages 83-104.
    9. Hadi El-Amine & Ebru K. Bish & Douglas R. Bish, 2018. "Robust Postdonation Blood Screening Under Prevalence Rate Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 1-17, 1-2.
    10. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    11. René Caldentey & Ying Liu & Ilan Lobel, 2017. "Intertemporal Pricing Under Minimax Regret," Operations Research, INFORMS, vol. 65(1), pages 104-129, February.
    12. Wang, Charles X. & Webster, Scott & Zhang, Sidong, 2014. "Robust price-setting newsvendor model with interval market size and consumer willingness-to-pay," International Journal of Production Economics, Elsevier, vol. 154(C), pages 100-112.
    13. Zhao, Yue & Chen, Zhi & Lim, Andrew & Zhang, Zhenzhen, 2022. "Vessel deployment with limited information: Distributionally robust chance constrained models," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 197-217.
    14. Jan Pablo Burgard & Carina Moreira Costa & Martin Schmidt, 2024. "Robustification of the k-means clustering problem and tailored decomposition methods: when more conservative means more accurate," Annals of Operations Research, Springer, vol. 339(3), pages 1525-1568, August.
    15. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    16. Michael O. Ball & Maurice Queyranne, 2009. "Toward Robust Revenue Management: Competitive Analysis of Online Booking," Operations Research, INFORMS, vol. 57(4), pages 950-963, August.
    17. Portoleau, Tom & Artigues, Christian & Guillaume, Romain, 2024. "Robust decision trees for the multi-mode project scheduling problem with a resource investment objective and uncertain activity duration," European Journal of Operational Research, Elsevier, vol. 312(2), pages 525-540.
    18. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    19. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    20. Georgios P. Trachanas & Aikaterini Forouli & Nikolaos Gkonis & Haris Doukas, 2020. "Hedging uncertainty in energy efficiency strategies: a minimax regret analysis," Operational Research, Springer, vol. 20(4), pages 2229-2244, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:2020:i:2:p:408-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.