IDEAS home Printed from https://ideas.repec.org/a/idn/jimfjn/v7y2021isifp167-184.html
   My bibliography  Save this article

Islamic, Green, And Conventional Cryptocurrency Market Efficiency During The Covid-19 Pandemic

Author

Listed:
  • Emna Mnif

    (Sfax University, Tunisia)

  • Anis Jarboui

    (Sfax University, Tunisia)

Abstract

Unlike conventional cryptocurrencies, Islamic ones are new technologies backed by tangible assets and are characterised by their fundamental values. After the COVID-19 outbreak, cryptocurrency responses have shown different behaviour to stock market reactions. However, there is a lack of studies on the efficiency of Islamic and green cryptocurrencies during the pandemic. This paper attempts to analyse the behaviour of three typical families of cryptocurrencies (conventional, Islamic, and green) extracted according to their availability in daily frequencies during COVID-19. For this purpose, their efficiency levels are studied before and after the outbreak by employing multifractal detrended fluctuation analysis (MFDFA) to make the best predictions and strategies. The inefficiency of the cryptocurrencies is assessed through a magnitude of long-memory (MLM) efficiency index, and the impact of COVID-19 on their efficiency is evaluated. The primary results show that HelloGold was the most efficient market before the COVID-19 outbreak and that subsequently Ethereum has been the most efficient. In addition, the findings reveal that the cryptocurrency reactions are not similar and show more resilience in the Ethereum and Litecoin markets than in other cryptocurrency markets. The main contribution of this study is the evaluation of the impact of COVID-19 on the various classes of crypto money. This work has practical implications, as it provides new insights into trading opportunities and market reactions. Moreover, the work has theoretical implications based on its evaluation of three distinct models from different doctrine viewpoints.

Suggested Citation

  • Emna Mnif & Anis Jarboui, 2021. "Islamic, Green, And Conventional Cryptocurrency Market Efficiency During The Covid-19 Pandemic," Journal of Islamic Monetary Economics and Finance, Bank Indonesia, vol. 7(Special I), pages 167-184, March.
  • Handle: RePEc:idn:jimfjn:v:7:y:2021:i:sif:p:167-184
    DOI: https://doi.org/10.21098/jimf.v7i0.1315
    as

    Download full text from publisher

    File URL: https://jimf-bi.org/index.php/JIMF/article/view/1315/849
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.21098/jimf.v7i0.1315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan, 2019. "Stock market efficiency analysis using long spans of Data: A multifractal detrended fluctuation approach," Finance Research Letters, Elsevier, vol. 28(C), pages 398-411.
    2. Conlon, Thomas & Corbet, Shaen & McGee, Richard J., 2020. "Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 54(C).
    3. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
    4. Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Herding behaviour in cryptocurrencies," Finance Research Letters, Elsevier, vol. 29(C), pages 216-221.
    5. Mnif, Emna & Jarboui, Anis & Mouakhar, Khaireddine, 2020. "How the cryptocurrency market has performed during COVID 19? A multifractal analysis," Finance Research Letters, Elsevier, vol. 36(C).
    6. Ballis, Antonis & Drakos, Konstantinos, 2020. "Testing for herding in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 33(C).
    7. Hu, Yang & Valera, Harold Glenn A. & Oxley, Les, 2019. "Market efficiency of the top market-cap cryptocurrencies: Further evidence from a panel framework," Finance Research Letters, Elsevier, vol. 31(C), pages 138-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavo Iamin, 2024. "Are crypto-investors overconfident? The role of risk propensity and demographics. Evidence from Brazil and Portugal," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 26(1), pages 147-173, November.
    2. Muhammad Irfan & Mubeen Abdur Rehman & Sarah Nawazish & Yu Hao, 2023. "Performance Analysis of Gold- and Fiat-Backed Cryptocurrencies: Risk-Based Choice for a Portfolio," JRFM, MDPI, vol. 16(2), pages 1-15, February.
    3. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    4. Naseem Al Rahahleh & Ahmed Al Qurashi, 2024. "The impact of COVID-19 on Ethereum returns and Ethereum market efficiency," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 14(3), pages 729-755, September.
    5. Ozkan Haykir & Ibrahim Yagli, 2022. "Speculative bubbles and herding in cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-33, December.
    6. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Pawe{l} O'swik{e}cimka & Tomasz Stanisz & Marcin Wk{a}torek, 2020. "Complexity in economic and social systems: cryptocurrency market at around COVID-19," Papers 2009.10030, arXiv.org.
    7. Wasiuzzaman, Shaista & Haji Abdul Rahman, Hajah Siti Wardah, 2021. "Performance of gold-backed cryptocurrencies during the COVID-19 crisis," Finance Research Letters, Elsevier, vol. 43(C).
    8. Zhao, Yuan & Liu, Nan & Li, Wanpeng, 2022. "Industry herding in crypto assets," International Review of Financial Analysis, Elsevier, vol. 84(C).
    9. Nuruddeen Usman & Kodili Nwanneka & Nduka, 2023. "Announcement Effect of COVID-19 on Cryptocurrencies," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 3(3), pages 1-4.
    10. Niculaescu, Corina E. & Sangiorgi, Ivan & Bell, Adrian R., 2023. "Does personal experience with COVID-19 impact investment decisions? Evidence from a survey of US retail investors," International Review of Financial Analysis, Elsevier, vol. 88(C).
    11. Jiang, Yonghong & Wu, Lanxin & Tian, Gengyu & Nie, He, 2021. "Do cryptocurrencies hedge against EPU and the equity market volatility during COVID-19? – New evidence from quantile coherency analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    12. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    13. Chen, An-Sing & Nguyen, Huong Thi, 2024. "A new perspective on how investor sentiment affects herding behavior in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 67(PA).
    14. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    15. Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
    16. Colon, Francisco & Kim, Chaehyun & Kim, Hana & Kim, Wonjoon, 2021. "The effect of political and economic uncertainty on the cryptocurrency market," Finance Research Letters, Elsevier, vol. 39(C).
    17. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    18. Xiaoyang, Xu & Ali, Shoaib & Naveed, Muhammad, 2024. "Artificial intelligence and big data tokens: Where cognition unites, herding patterns take flight," Research in International Business and Finance, Elsevier, vol. 72(PA).
    19. Aiman Hairudin & Imtiaz Mohammad Sifat & Azhar Mohamad & Yusniliyana Yusof, 2022. "Cryptocurrencies: A survey on acceptance, governance and market dynamics," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4633-4659, October.
    20. Karim, Muhammad Mahmudul & Shah, Mohamed Eskandar & Noman, Abu Hanifa Md. & Yarovaya, Larisa, 2024. "Exploring asymmetries in cryptocurrency intraday returns and implied volatility: New evidence for high-frequency traders," International Review of Financial Analysis, Elsevier, vol. 96(PA).

    More about this item

    Keywords

    Islamic cryptocurrencies; Covid-19; Efficiency; MFDFA;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:idn:jimfjn:v:7:y:2021:i:sif:p:167-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lutzardo Tobing The email address of this maintainer does not seem to be valid anymore. Please ask Lutzardo Tobing to update the entry or send us the correct address or Jimmy Kathon (email available below). General contact details of provider: https://edirc.repec.org/data/bigovid.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.