IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9764341.html
   My bibliography  Save this article

Effectively Detecting Communities by Adjusting Initial Structure via Cores

Author

Listed:
  • Mei Chen
  • Zhichong Yang
  • Xiaofang Wen
  • Mingwei Leng
  • Mei Zhang
  • Ming Li

Abstract

Community detection is helpful to understand useful information in real-world networks by uncovering their natural structures. In this paper, we propose a simple but effective community detection algorithm, called ACC, which needs no heuristic search but has near-linear time complexity. ACC defines a novel similarity which is different from most common similarity definitions by considering not only common neighbors of two adjacent nodes but also their mutual exclusive degree. According to this similarity, ACC groups nodes together to obtain the initial community structure in the first step. In the second step, ACC adjusts the initial community structure according to cores discovered through a new local density which is defined as the influence of a node on its neighbors. The third step expands communities to yield the final community structure. To comprehensively demonstrate the performance of ACC, we compare it with seven representative state-of-the-art community detection algorithms, on small size networks with ground-truth community structures and relatively big-size networks without ground-truth community structures. Experimental results show that ACC outperforms the seven compared algorithms in most cases.

Suggested Citation

  • Mei Chen & Zhichong Yang & Xiaofang Wen & Mingwei Leng & Mei Zhang & Ming Li, 2019. "Effectively Detecting Communities by Adjusting Initial Structure via Cores," Complexity, Hindawi, vol. 2019, pages 1-20, November.
  • Handle: RePEc:hin:complx:9764341
    DOI: 10.1155/2019/9764341
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/9764341.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/9764341.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9764341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    2. A. Tabrizi, Shayan & Shakery, Azadeh & Asadpour, Masoud & Abbasi, Maziar & Tavallaie, Mohammad Ali, 2013. "Personalized PageRank Clustering: A graph clustering algorithm based on random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5772-5785.
    3. Martin Rosvall & Carl T Bergstrom, 2011. "Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lovro Šubelj & Nees Jan van Eck & Ludo Waltman, 2016. "Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.
    2. Sun, Peng Gang, 2015. "Community detection by fuzzy clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 408-416.
    3. Hanlin You & Mengjun Li & Jiang Jiang & Bingfeng Ge & Xueting Zhang, 2017. "Evolution monitoring for innovation sources using patent cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 693-715, May.
    4. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    5. Alessandro Tavoni & Simon Levin, 2014. "Managing the climate commons at the nexus of ecology, behaviour and economics," Nature Climate Change, Nature, vol. 4(12), pages 1057-1063, December.
    6. Gholami, Maryam & Sheikhahmadi, Amir & Khamforoosh, Keyhan & Jalili, Mahdi, 2022. "Overlapping community detection in networks based on Neutrosophic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    7. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Overlapping community detection using neighborhood ratio matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 510-521.
    8. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Martin Rosvall & Carl T Bergstrom, 2011. "Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-10, April.
    10. Jo, Hang-Hyun & Moon, Eunyoung, 2016. "Dynamical complexity in the perception-based network formation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 282-292.
    11. Hao Long & Xiao-Wei Liu, 2019. "A Unified Community Detection Algorithm In Large-Scale Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-19, May.
    12. Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
    13. Li, Shunlong & Wang, Jie & He, Shaoyang, 2023. "Connectivity probability evaluation of a large-scale highway bridge network using network decomposition," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    14. Mary F. McGuire, 2014. "Pancreatic Cancer: Insights from Counterterrorism Theories," Decision Analysis, INFORMS, vol. 11(4), pages 265-276, December.
    15. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    16. Chakraborty, Abhijit & Krichene, Hazem & Inoue, Hiroyasu & Fujiwara, Yoshi, 2019. "Characterization of the community structure in a large-scale production network in Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 210-221.
    17. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    18. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    19. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    20. Abhijit Chakraborty & Yuichi Kichikawa & Takashi Iino & Hiroshi Iyetomi & Hiroyasu Inoue & Yoshi Fujiwara & Hideaki Aoyama, 2018. "Hierarchical communities in the walnut structure of the Japanese production network," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-25, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9764341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.