IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9586064.html

The Multiplex Dependency Structure of Financial Markets

Author

Listed:
  • Nicolò Musmeci
  • Vincenzo Nicosia
  • Tomaso Aste
  • Tiziana Di Matteo
  • Vito Latora

Abstract

We propose here a multiplex network approach to investigate simultaneously different types of dependency in complex datasets. In particular, we consider multiplex networks made of four layers corresponding, respectively, to linear, nonlinear, tail, and partial correlations among a set of financial time series. We construct the sparse graph on each layer using a standard network filtering procedure, and we then analyse the structural properties of the obtained multiplex networks. The study of the time evolution of the multiplex constructed from financial data uncovers important changes in intrinsically multiplex properties of the network, and such changes are associated with periods of financial stress. We observe that some features are unique to the multiplex structure and would not be visible otherwise by the separate analysis of the single-layer networks corresponding to each dependency measure.

Suggested Citation

  • Nicolò Musmeci & Vincenzo Nicosia & Tomaso Aste & Tiziana Di Matteo & Vito Latora, 2017. "The Multiplex Dependency Structure of Financial Markets," Complexity, Hindawi, vol. 2017, pages 1-13, September.
  • Handle: RePEc:hin:complx:9586064
    DOI: 10.1155/2017/9586064
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/9586064.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/9586064.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/9586064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolo Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," Papers 1406.0496, arXiv.org, revised Jan 2015.
    2. Tomaso Aste & Ruggero Gramatica & T. Di Matteo, 2011. "Exploring complex networks via topological embedding on surfaces," Papers 1107.3456, arXiv.org, revised Aug 2012.
    3. Barfuss, Wolfram & Massara, Guido Previde & Di Matteo, T. & Aste, Tomaso, 2016. "Parsimonious modeling with information filtering networks," LSE Research Online Documents on Economics 68860, London School of Economics and Political Science, LSE Library.
    4. Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
    5. Barigozzi, Matteo & Fagiolo, Giorgio & Mangioni, Giuseppe, 2011. "Identifying the community structure of the international-trade multi-network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2051-2066.
    6. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    7. Christian Borghesi & Matteo Marsili & Salvatore Miccich`e, 2007. "Emergence of time-horizon invariant correlation structure in financial returns by subtraction of the market mode," Papers physics/0702106, arXiv.org.
    8. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2016. "What does past correlation structure tell us about the future? An answer from network filtering," Papers 1605.08908, arXiv.org.
    9. Aste, T. & Di Matteo, T. & Hyde, S.T., 2005. "Complex networks on hyperbolic surfaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(1), pages 20-26.
    10. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
    11. Daniel J. Fenn & Mason A. Porter & Peter J. Mucha & Mark McDonald & Stacy Williams & Neil F. Johnson & Nick S. Jones, 2012. "Dynamical clustering of exchange rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1493-1520, October.
    12. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    13. George A. Barnett & Han Woo Park & Ke Jiang & Chuan Tang & Isidro F. Aguillo, 2014. "A multi-level network analysis of web-citations among the world’s universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 5-26, April.
    14. Montagna, Mattia & Kok, Christoffer, 2013. "Multi-layered interbank model for assessing systemic risk," Kiel Working Papers 1873, Kiel Institute for the World Economy (IfW Kiel).
    15. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    16. D. Sornette & J. V. Andersen, 2002. "A Nonlinear Super-Exponential Rational Model Of Speculative Financial Bubbles," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 171-187.
    17. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    18. T. Di Matteo & F. Pozzi & T. Aste, 2010. "The use of dynamical networks to detect the hierarchical organization of financial market sectors," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 3-11, January.
    19. D. Sornette & J. V. Andersen, 2001. "A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles," Papers cond-mat/0104341, arXiv.org, revised Apr 2002.
    20. F. Pozzi & T. Matteo & T. Aste, 2012. "Exponential smoothing weighted correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(6), pages 1-21, June.
    21. Aste, T. & Di Matteo, T., 2006. "Dynamical networks from correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 156-161.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Musmeci, Nicoló & Nicosia, Vincenzo & Aste, Tomaso & Di Matteo, Tiziana & Latora, Vito, 2017. "The multiplex dependency structure of financial markets," LSE Research Online Documents on Economics 85337, London School of Economics and Political Science, LSE Library.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621, arXiv.org.
    4. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    5. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
    6. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    7. Nicolo Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," Papers 1406.0496, arXiv.org, revised Jan 2015.
    8. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2016. "What does past correlation structure tell us about the future? An answer from network filtering," Papers 1605.08908, arXiv.org.
    9. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    10. Esmalifalak, Hamidreza, 2022. "Euclidean (dis)similarity in financial network analysis," Global Finance Journal, Elsevier, vol. 53(C).
    11. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    12. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    13. Millington, Tristan & Niranjan, Mahesan, 2021. "Stability and similarity in financial networks—How do they change in times of turbulence?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    14. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    15. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2025. "Mesoscopic structure of the stock market and portfolio optimization," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 20(2), pages 307-333, April.
    16. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    17. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    18. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2018. "Dynamic correlations at different time-scales with empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 534-544.
    19. Tu, Chengyi, 2014. "Cointegration-based financial networks study in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 245-254.
    20. Arnav Hiray & Pratvi Shah & Vishwa Shah & Agam Shah & Sudheer Chava & Mukesh Tiwari, 2023. "Shifting Cryptocurrency Influence: A High-Resolution Network Analysis of Market Leaders," Papers 2307.16874, arXiv.org, revised Jan 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9586064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.