IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9367291.html
   My bibliography  Save this article

Evaluating Fractional PID Control in a Nonlinear MIMO Model of a Hydroelectric Power Station

Author

Listed:
  • O. A. Rosas-Jaimes
  • G. A. Munoz-Hernandez
  • G. Mino-Aguilar
  • J. Castaneda-Camacho
  • C. A. Gracios-Marin

Abstract

In this paper a Fractional PID Control is presented. This control was designed for a hydropower plant with six generation units working in an alternation scheme. The parameters and other features of such a set of hydrogeneration units have been used to perform the respective tuning up. In order to assess the behavior of this controlled system, a model of such nonlinear plant is regulated through a classical PID by classical linearization of its set points, and then a pseudo-derivative part is substituted into a Fractional PID. Both groups of signals contain variations of voltage suggesting some abrupt changes in the supply of electricity fed to the network. Both sets of resulting signals are compared; the simulations show that the Fractional PID has a faster response with respect to those plots obtained from the classical PID used.

Suggested Citation

  • O. A. Rosas-Jaimes & G. A. Munoz-Hernandez & G. Mino-Aguilar & J. Castaneda-Camacho & C. A. Gracios-Marin, 2019. "Evaluating Fractional PID Control in a Nonlinear MIMO Model of a Hydroelectric Power Station," Complexity, Hindawi, vol. 2019, pages 1-15, January.
  • Handle: RePEc:hin:complx:9367291
    DOI: 10.1155/2019/9367291
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/9367291.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/9367291.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9367291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuang Li & Yong Yang & Qing Xia, 2018. "Dynamic Safety Assessment in Nonlinear Hydropower Generation Systems," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    2. Xu, Beibei & Chen, Diyi & Zhang, Hao & Wang, Feifei, 2015. "Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 50-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Gambier, 2021. "Pitch Control of Three Bladed Large Wind Energy Converters—A Review," Energies, MDPI, vol. 14(23), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yi & Zhang, Jian & Liu, Zhe & Chen, Long & Yu, Xiaodong, 2022. "Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance," Renewable Energy, Elsevier, vol. 186(C), pages 667-676.
    2. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Deshpande, Amey S. & Daftardar-Gejji, Varsha, 2017. "On disappearance of chaos in fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 119-126.
    4. Sheng Chen & Gaohui Li & Delou Wang & Xingtao Wang & Jian Zhang & Xiaodong Yu, 2019. "Impact of Tail Water Fluctuation on Turbine Start-Up and Optimized Regulation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    5. Tang, Renbo & Yang, Jiandong & Yang, Weijia & Zou, Jin & Lai, Xu, 2019. "Dynamic regulation characteristics of pumped-storage plants with two generating units sharing common conduits and busbar for balancing variable renewable energy," Renewable Energy, Elsevier, vol. 135(C), pages 1064-1077.
    6. Tsapla Fotsa, R. & Woafo, P., 2016. "Chaos in a new bistable rotating electromechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 48-57.
    7. Ren, Lei & Lin, Ming-Hung & Abdulwahab, Abdulkareem & Ma, Jun & Saberi-Nik, Hassan, 2023. "Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Yu, Xiaodong & Zhang, Jian & Fan, Chengyu & Chen, Sheng, 2016. "Stability analysis of governor-turbine-hydraulic system by state space method and graph theory," Energy, Elsevier, vol. 114(C), pages 613-622.
    9. Tianyu Yang & Bin Wang & Peng Chen, 2020. "Design of a Finite-Time Terminal Sliding Mode Controller for a Nonlinear Hydro-Turbine Governing System," Energies, MDPI, vol. 13(3), pages 1-14, February.
    10. Yu, Xiaodong & Yang, Xiuwei & Zhang, Jian, 2019. "Stability analysis of hydro-turbine governing system including surge tanks under interconnected operation during small load disturbance," Renewable Energy, Elsevier, vol. 133(C), pages 1426-1435.
    11. Wang, Feifei & Chen, Diyi & Xu, Beibei & Zhang, Hao, 2016. "Nonlinear dynamics of a novel fractional-order Francis hydro-turbine governing system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 329-338.
    12. Dai, Hongzhe & Zheng, Zhibao & Wang, Wei, 2017. "On generalized fractional vibration equation," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 48-51.
    13. Wuyi Wan & Boran Zhang & Xiaoyi Chen, 2018. "Investigation on Water Hammer Control of Centrifugal Pumps in Water Supply Pipeline Systems," Energies, MDPI, vol. 12(1), pages 1-20, December.
    14. Xu, Beibei & Chen, Diyi & Patelli, Edoardo & Shen, Haijun & Park, Jae-Hyun, 2019. "Mathematical model and parametric uncertainty analysis of a hydraulic generating system," Renewable Energy, Elsevier, vol. 136(C), pages 1217-1230.
    15. Gao, Chunyang & Yu, Xiangyang & Nan, Haipeng & Men, Chuangshe & Zhao, Peiyu & Cai, Qingsen & Fu, Jianing, 2021. "Stability and dynamic analysis of doubly-fed variable speed pump turbine governing system based on Hopf bifurcation theory," Renewable Energy, Elsevier, vol. 175(C), pages 568-579.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9367291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.