A Differential Evolution-Oriented Pruning Neural Network Model for Bankruptcy Prediction
Author
Abstract
Suggested Citation
DOI: 10.1155/2019/8682124
Download full text from publisher
References listed on IDEAS
- Muriel Perez, 2006. "Artificial Neural Networks And Bankruptcy Forecasting : A State Of The Art," Post-Print halshs-00522129, HAL.
- Christof Koch, 1997. "Computation and the single neuron," Nature, Nature, vol. 385(6613), pages 207-210, January.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Hong Wang & Qingsong Xu & Lifeng Zhou, 2015. "Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-20, February.
- Kiefer, Nicholas M., 2009.
"Default estimation for low-default portfolios,"
Journal of Empirical Finance, Elsevier, vol. 16(1), pages 164-173, January.
- Kiefer, Nicholas M., 2006. "Default Estimation for Low-Default Portfolios," Working Papers 06-08, Cornell University, Center for Analytic Economics.
- Fabrizio Gabbiani & Holger G. Krapp & Christof Koch & Gilles Laurent, 2002. "Multiplicative computation in a visual neuron sensitive to looming," Nature, Nature, vol. 420(6913), pages 320-324, November.
- Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
- Marta Morey & Susan K. Yee & Tory Herman & Aljoscha Nern & Enrique Blanco & S. Lawrence Zipursky, 2008. "Coordinate control of synaptic-layer specificity and rhodopsins in photoreceptor neurons," Nature, Nature, vol. 456(7223), pages 795-799, December.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 18(1), pages 109-131.
- Hung, Ming S. & Denton, James W., 1993. "Training neural networks with the GRG2 nonlinear optimizer," European Journal of Operational Research, Elsevier, vol. 69(1), pages 83-91, August.
- David J. Hand, 2012. "Assessing the Performance of Classification Methods," International Statistical Review, International Statistical Institute, vol. 80(3), pages 400-414, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sabek Amine, 2023. "Unveiling the diverse efficacy of artificial neural networks and logistic regression: A comparative analysis in predicting financial distress," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 9(1), pages 16-32, July.
- Marek Vochozka & Jaromir Vrbka & Petr Suler, 2020. "Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dejan JOVANOVIĆ & Mirjana TODOROVIĆ & Milka GRBIĆ, 2017. "Financial Indicators As Predictors Of Illiquidity," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 128-149, March.
- Le, Hong Hanh & Viviani, Jean-Laurent, 2018.
"Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios,"
Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
- Hong Hanh Le & Jean-Laurent Viviani, 2018. "Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios," Post-Print halshs-01615106, HAL.
- Lin, Fengyi & Yeh, Ching Chiang & Lee, Meng Yuan, 2013. "A Hybrid Business Failure Prediction Model Using Locally Linear Embedding And Support Vector Machines," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 82-97, March.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
- Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
- Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
- Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
- Foo See Liang & Shaak Pathak, 2019. "Understanding the Connection of Performance and Z-Scores for Manufacturing Firms in South Korea," Journal of Asian Development, Macrothink Institute, vol. 5(3), pages 37-46, November.
- Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
- En-Der Su & Shih-Ming Huang, 2010. "Comparing Firm Failure Predictions Between Logit, KMV, and ZPP Models: Evidence from Taiwan’s Electronics Industry," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(3), pages 209-239, September.
- Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
- Tomasz Korol, 2020. "Assessment of Trajectories of Non-bankrupt and Bankrupt Enterprises," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1113-1135.
- Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
- Khaled Halteh & Kuldeep Kumar & Adrian Gepp, 2018. "Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk," Risks, MDPI, vol. 6(2), pages 1-13, May.
- repec:ctc:sdimse:dime21_01 is not listed on IDEAS
- Marko Špiler & Tijana Matejić & Snežana Knežević & Marko Milašinović & Aleksandra Mitrović & Vesna Bogojević Arsić & Tijana Obradović & Dragoljub Simonović & Vukašin Despotović & Stefan Milojević & Mi, 2022. "Assessment of the Bankruptcy Risk in the Hotel Industry as a Condition of the COVID-19 Crisis Using Time-Delay Neural Networks," Sustainability, MDPI, vol. 15(1), pages 1-54, December.
- Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
- Goriunov Dmytro & Venzhyk Katerina, 2013. "Loan Default Prediction in Ukrainian Retail Banking," EERC Working Paper Series 13/07e, EERC Research Network, Russia and CIS.
- Jie Sun & Mengjie Zhou & Wenguo Ai & Hui Li, 2019. "Dynamic prediction of relative financial distress based on imbalanced data stream: from the view of one industry," Risk Management, Palgrave Macmillan, vol. 21(4), pages 215-242, December.
- Nicoleta Bărbuță-Mișu & Mara Madaleno, 2020. "Assessment of Bankruptcy Risk of Large Companies: European Countries Evolution Analysis," JRFM, MDPI, vol. 13(3), pages 1-28, March.
- Adler Haymans Manurung & Derwin Suhartono & Benny Hutahayan & Noptovius Halimawan, 2023. "Probability Bankruptcy Using Support Vector Regression Machines," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(1), pages 1-3.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8682124. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.