IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7081674.html
   My bibliography  Save this article

Hypergraph Regularized Discriminative Nonnegative Matrix Factorization on Sample Classification and Co-Differentially Expressed Gene Selection

Author

Listed:
  • Yong-Jing Hao
  • Ying-Lian Gao
  • Mi-Xiao Hou
  • Ling-Yun Dai
  • Jin-Xing Liu

Abstract

Nonnegative Matrix Factorization (NMF) is a significant big data analysis technique. However, standard NMF regularized by simple graph does not have discriminative function, and traditional graph models cannot accurately reflect the problem of multigeometry information between data. To solve the above problem, this paper proposed a new method called Hypergraph Regularized Discriminative Nonnegative Matrix Factorization (HDNMF), which captures intrinsic geometry by constructing hypergraphs rather than simple graphs. The introduction of the hypergraph method allows high-order relationships between samples to be considered, and the introduction of label information enables the method to have discriminative effect. Both the hypergraph Laplace and the discriminative label information are utilized together to learn the projection matrix in the standard method. In addition, we offered a corresponding multiplication update solution for the optimization. Experiments indicate that the method proposed is more effective by comparing with the earlier methods.

Suggested Citation

  • Yong-Jing Hao & Ying-Lian Gao & Mi-Xiao Hou & Ling-Yun Dai & Jin-Xing Liu, 2019. "Hypergraph Regularized Discriminative Nonnegative Matrix Factorization on Sample Classification and Co-Differentially Expressed Gene Selection," Complexity, Hindawi, vol. 2019, pages 1-12, August.
  • Handle: RePEc:hin:complx:7081674
    DOI: 10.1155/2019/7081674
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/7081674.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/7081674.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7081674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Brito, M. R. & Chávez, E. L. & Quiroz, A. J. & Yukich, J. E., 1997. "Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection," Statistics & Probability Letters, Elsevier, vol. 35(1), pages 33-42, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    2. José M. Maisog & Andrew T. DeMarco & Karthik Devarajan & Stanley Young & Paul Fogel & George Luta, 2021. "Assessing Methods for Evaluating the Number of Components in Non-Negative Matrix Factorization," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    3. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    4. Zura Kakushadze & Willie Yu, 2017. "Mutation Clusters from Cancer Exome," Papers 1707.08504, arXiv.org.
    5. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    6. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    7. Ma, Xiaoke & Li, Dongyuan & Tan, Shiyin & Huang, Zhihao, 2019. "Detecting evolving communities in dynamic networks using graph regularized evolutionary nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 530(C), pages 1-1.
    8. Nelson Lind & Natalia Ramondo, 2023. "Trade with Correlation," American Economic Review, American Economic Association, vol. 113(2), pages 317-353, February.
    9. Guodong Jin & Jing Gao & Lining Tan, 2022. "Robust large-scale clustering based on correntropy," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-17, November.
    10. János Abonyi & Ádám Ipkovich & Gyula Dörgő & Károly Héberger, 2023. "Matrix factorization-based multi-objective ranking–What makes a good university?," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-30, April.
    11. Ziqi Li & Hongcheng Song & Hefeng Yin & Yonghong Zhang & Guangyong Zhang, 2023. "Locality-Constraint Discriminative Nonnegative Representation for Pattern Classification," Mathematics, MDPI, vol. 12(1), pages 1-16, December.
    12. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Overlapping community detection using neighborhood ratio matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 510-521.
    13. Triss Ashton & Nicholas Evangelopoulos & Victor Prybutok, 2014. "Extending monitoring methods to textual data: a research agenda," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2277-2294, July.
    14. Brito, María R. & Quiroz, Adolfo J. & Yukich, J. E., 2002. "Graph-Theoretic Procedures for Dimension Identification," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 67-84, April.
    15. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    16. Zhang, Zhong-Yuan & Gai, Yujie & Wang, Yu-Fei & Cheng, Hui-Min & Liu, Xin, 2018. "On equivalence of likelihood maximization of stochastic block model and constrained nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 687-697.
    17. Hiroyasu Abe & Hiroshi Yadohisa, 2017. "A non-negative matrix factorization model based on the zero-inflated Tweedie distribution," Computational Statistics, Springer, vol. 32(2), pages 475-499, June.
    18. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    19. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    20. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7081674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.