IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v16y2013i3p291-301.html
   My bibliography  Save this article

How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?

Author

Listed:
  • M. Moghadam
  • K. Aminian
  • M. Asghari
  • M. Parnianpour

Abstract

The way central nervous system manages the excess degrees of freedom to solve kinetic redundancy of musculoskeletal system remains an open question. In this study, we utilise the concept of synergy formation as a simplifying control strategy to find the muscle recruitment based on summation of identified muscle synergies to balance the biomechanical demands (biaxial external torque) during an isometric shoulder task. A numerical optimisation-based shoulder model was used to obtain muscle activation levels when a biaxial external isometric torque is imposed at the shoulder glenohumeral joint. In the numerical simulations, 12 different shoulder torque vectors in the transverse plane are considered. For each selected direction for the torque vector, the resulting muscle activation data are calculated. The predicted muscle activation data are used for grouping muscles in some fixed element synergies by the non-negative matrix factorisation method. Next, torque produced by these synergies are computed and projected in the 2D torque space to investigate the magnitude and direction of torques that each muscle synergy generated. The results confirmed our expectation that few dominant synergies are sufficient to reconstruct the torque vectors and each muscle contributed to more than one synergy. Decomposition of the concatenated data, combining the activation and external torque, provided functional muscle synergies that produced torques in the four principal directions. Four muscle synergies were able to account for more than 95% of variation of the original data.

Suggested Citation

  • M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
  • Handle: RePEc:taf:gcmbxx:v:16:y:2013:i:3:p:291-301
    DOI: 10.1080/10255842.2011.617705
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2011.617705
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2011.617705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Berry, Michael W. & Browne, Murray & Langville, Amy N. & Pauca, V. Paul & Plemmons, Robert J., 2007. "Algorithms and applications for approximate nonnegative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 155-173, September.
    3. Ash A. Alizadeh & Michael B. Eisen & R. Eric Davis & Chi Ma & Izidore S. Lossos & Andreas Rosenwald & Jennifer C. Boldrick & Hajeer Sabet & Truc Tran & Xin Yu & John I. Powell & Liming Yang & Gerald E, 2000. "Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling," Nature, Nature, vol. 403(6769), pages 503-511, February.
    4. Alan Chu & Richard E. Hughes, 2010. "A method to determine whether a musculoskeletal model can resist arbitrary external loadings within a prescribed range," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 13(6), pages 795-802.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    2. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.
    3. Yoshi Fujiwara & Rubaiyat Islam, 2021. "Bitcoin's Crypto Flow Network," Papers 2106.11446, arXiv.org, revised Jul 2021.
    4. Yin Liu & Sam Davanloo Tajbakhsh, 2023. "Stochastic Composition Optimization of Functions Without Lipschitz Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 239-289, July.
    5. Hiroyasu Abe & Hiroshi Yadohisa, 2019. "Orthogonal nonnegative matrix tri-factorization based on Tweedie distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 825-853, December.
    6. Guowei Yang & Lin Zhang & Minghua Wan, 2022. "Exponential Graph Regularized Non-Negative Low-Rank Factorization for Robust Latent Representation," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    7. Jingu Kim & Yunlong He & Haesun Park, 2014. "Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework," Journal of Global Optimization, Springer, vol. 58(2), pages 285-319, February.
    8. Soodabeh Asadi & Janez Povh, 2021. "A Block Coordinate Descent-Based Projected Gradient Algorithm for Orthogonal Non-Negative Matrix Factorization," Mathematics, MDPI, vol. 9(5), pages 1-22, March.
    9. Thiel, Michel & Sauwen, Nicolas & Khamiakova, Tastian & Maes, Tor & Govaerts, Bernadette, 2021. "Comparison of chemometrics strategies for the spectroscopic monitoring of active pharmaceutical ingredients in chemical reactions," LIDAM Discussion Papers ISBA 2021009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Jason B Castro & Arvind Ramanathan & Chakra S Chennubhotla, 2013. "Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    11. Duy Khuong Nguyen & Tu Bao Ho, 2017. "Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization," Journal of Global Optimization, Springer, vol. 68(2), pages 307-328, June.
    12. FUJIWARA Yoshi & INOUE Hiroyasu & YAMAGUCHI Takayuki & AOYAMA Hideaki & TANAKA Takuma & KIKUCHI Kentaro, 2021. "Money Flow Network Among Firms' Accounts in a Regional Bank of Japan," Discussion papers 21005, Research Institute of Economy, Trade and Industry (RIETI).
    13. Bastian Schaefermeier & Gerd Stumme & Tom Hanika, 2021. "Topic space trajectories," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5759-5795, July.
    14. Hiroyasu Abe & Hiroshi Yadohisa, 2017. "A non-negative matrix factorization model based on the zero-inflated Tweedie distribution," Computational Statistics, Springer, vol. 32(2), pages 475-499, June.
    15. Norikazu Takahashi & Ryota Hibi, 2014. "Global convergence of modified multiplicative updates for nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 57(2), pages 417-440, March.
    16. Zhang, Lingsong & Lu, Shu & Marron, J.S., 2015. "Nested nonnegative cone analysis," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 100-110.
    17. Yong Gao & Jiajun Liu & Yan Xu & Lan Mu & Yu Liu, 2019. "A Spatiotemporal Constraint Non-Negative Matrix Factorization Model to Discover Intra-Urban Mobility Patterns from Taxi Trips," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    18. Hua Zhou & Kenneth Lange, 2015. "Path following in the exact penalty method of convex programming," Computational Optimization and Applications, Springer, vol. 61(3), pages 609-634, July.
    19. Hu, Li-Ying & Guo, Gong-De & Ma, Chang-Feng, 2015. "Image processing using Newton-based algorithm of nonnegative matrix factorization," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 956-964.
    20. Juan Pineiro-Chousa & Marcos Vizcaíno-González & Samuel Ribeiro-Navarrete, 2019. "Using voting decisions to identify shocks in the financial services industry," Service Business, Springer;Pan-Pacific Business Association, vol. 13(2), pages 419-431, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:16:y:2013:i:3:p:291-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.