IDEAS home Printed from
   My bibliography  Save this article

Path following in the exact penalty method of convex programming


  • Hua Zhou


  • Kenneth Lange


Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to $$\infty $$ ∞ , one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to (a) projection onto a convex set, (b) nonnegative least squares, (c) quadratically constrained quadratic programming, (d) geometric programming, and (e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Hua Zhou & Kenneth Lange, 2015. "Path following in the exact penalty method of convex programming," Computational Optimization and Applications, Springer, vol. 61(3), pages 609-634, July.
  • Handle: RePEc:spr:coopap:v:61:y:2015:i:3:p:609-634
    DOI: 10.1007/s10589-015-9732-x

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hua Zhou & Yichao Wu, 2014. "A Generic Path Algorithm for Regularized Statistical Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 686-699, June.
    2. Elmor L. Peterson, 1976. "Fenchel's Duality Thereom in Generalized Geometric Programming," Discussion Papers 252, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Elmor L. Peterson, 1976. "Optimality Conditions in Generalized Geometric Programming," Discussion Papers 221, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Willard I. Zangwill, 1967. "Non-Linear Programming Via Penalty Functions," Management Science, INFORMS, vol. 13(5), pages 344-358, January.
    5. Hua Zhou & Kenneth L. Lange, 2010. "On the Bumpy Road to the Dominant Mode," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 612-631.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:61:y:2015:i:3:p:609-634. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.