IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5734149.html
   My bibliography  Save this article

A Novel MOEA/D for Multiobjective Scheduling of Flexible Manufacturing Systems

Author

Listed:
  • Xinnian Wang
  • Keyi Xing
  • Chao-Bo Yan
  • Mengchu Zhou

Abstract

This paper considers the multiobjective scheduling of flexible manufacturing systems (FMSs). Due to high degrees of route flexibility and resource sharing, deadlocks often exhibit in FMSs. Manufacturing tasks cannot be finished if any deadlock appears. For solving such problem, this work develops a deadlock-free multiobjective evolutionary algorithm based on decomposition (DMOEA/D). It intends to minimize three objective functions, i.e., makespan, mean flow time, and mean tardiness time. The proposed algorithm can decompose a multiobjective scheduling problem into a certain number of scalar subproblems and solves all the subproblems in a single run. A type of a discrete differential evolution (DDE) algorithm is also developed for solving each subproblem. The mutation operator of the proposed DDE is based on the hamming distance of two randomly selected solutions, while the crossover operator is based on Generalization of Order Crossover. Experimental results demonstrate that the proposed DMOEA/D can significantly outperform a Pareto domination-based algorithm DNSGA-II for both 2-objective and 3-objective problems on the studied FMSs.

Suggested Citation

  • Xinnian Wang & Keyi Xing & Chao-Bo Yan & Mengchu Zhou, 2019. "A Novel MOEA/D for Multiobjective Scheduling of Flexible Manufacturing Systems," Complexity, Hindawi, vol. 2019, pages 1-14, June.
  • Handle: RePEc:hin:complx:5734149
    DOI: 10.1155/2019/5734149
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/5734149.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/5734149.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/5734149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosario Domingo & Beatriz De Agustina & Marta M. Marín, 2018. "A Multi-Response Optimization of Thrust Forces, Torques, and the Power of Tapping Operations by Cooling Air in Reinforced and Unreinforced Polyamide PA66," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
    2. Libin Han & Keyi Xing & Xiao Chen & Fuli Xiong, 2018. "A Petri net-based particle swarm optimization approach for scheduling deadlock-prone flexible manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1083-1096, June.
    3. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    4. Alejandro Alvarado-Iniesta & Jorge L. García-Alcaraz & Manuel Piña-Monarrez & Luis Pérez-Domínguez, 2016. "Multiobjective optimization of torch brazing process by a hybrid of fuzzy logic and multiobjective artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 631-638, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxing Wang & Sibin Gao & Zhejun Tang & Dapeng Tan & Bin Cao & Jing Fan, 2023. "A context-aware recommendation system for improving manufacturing process modeling," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1347-1368, March.
    2. Cosmena Mahapatra & Ashish Payal & Meenu Chopra, 2020. "Swarm intelligence based centralized clustering: a novel solution," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1877-1888, December.
    3. Yiying Zhang & Aining Chi, 2023. "Group teaching optimization algorithm with information sharing for numerical optimization and engineering optimization," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1547-1571, April.
    4. G. Cherif & E. Leclercq & D. Lefebvre, 2023. "Scheduling of a class of partial routing FMS in uncertain environments with beam search," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 493-514, February.
    5. Wattana Viriyasitavat & Li Xu & Zhuming Bi & Assadaporn Sapsomboon, 2020. "Blockchain-based business process management (BPM) framework for service composition in industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1737-1748, October.
    6. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Henghui Zhu & Hao Liu & Armin Ataei & Yonatan Munk & Thomas Daniel & Ioannis Ch Paschalidis, 2020. "Learning from animals: How to Navigate Complex Terrains," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-17, January.
    8. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Leithon, Johann & Werner, Stefan & Koivunen, Visa, 2021. "Energy optimization through cooperative storage management: A calculus of variations approach," Renewable Energy, Elsevier, vol. 171(C), pages 1357-1370.
    10. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    11. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    12. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    13. Si, Fangyuan & Han, Yinghua & Zhao, Qiang & Wang, Jinkuan, 2020. "Cost-effective operation of the urban energy system with variable supply and demand via coordination of multi-energy flows," Energy, Elsevier, vol. 203(C).
    14. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    15. Sharafian, Amin & Sharifi, Alireza & Zhang, Weidong, 2020. "Different types of sliding mode controller for nonlinear fractional multi-Agent system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    16. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    17. Kaiqiang An & Guiyu Zhao & Jinjun Li & Jingsong Tian & Lihua Wang & Liang Xian & Chen Chen, 2023. "Best-Case Scenario Robust Portfolio: Evidence from China Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 297-322, June.
    18. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    19. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    20. Yerasimos Yerasimou & Marios Kynigos & Venizelos Efthymiou & George E. Georghiou, 2021. "Design of a Smart Nanogrid for Increasing Energy Efficiency of Buildings," Energies, MDPI, vol. 14(12), pages 1-19, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5734149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.