IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4376809.html
   My bibliography  Save this article

Fuzzy and Control Charts: A Data-Adaptability and Human-Acceptance Approach

Author

Listed:
  • Ming-Hung Shu
  • Dinh-Chien Dang
  • Thanh-Lam Nguyen
  • Bi-Min Hsu
  • Ngoc-Son Phan

Abstract

For sequentially monitoring and controlling average and variability of an online manufacturing process, and control charts are widely utilized tools, whose constructions require the data to be real (precise) numbers. However, many quality characteristics in practice, such as surface roughness of optical lenses, have been long recorded as fuzzy data, in which the traditional and charts have manifested some inaccessibility. Therefore, for well accommodating this fuzzy-data domain, this paper integrates fuzzy set theories to establish the fuzzy charts under a general variable-sample-size condition. First, the resolution-identity principle is exerted to erect the sample-statistics’ and control-limits’ fuzzy numbers (SSFNs and CLFNs), where the sample fuzzy data are unified and aggregated through statistical and nonlinear-programming manipulations. Then, the fuzzy-number ranking approach based on left and right integral index is brought to differentiate magnitude of fuzzy numbers and compare SSFNs and CLFNs pairwise. Thirdly, the fuzzy-logic alike reasoning is enacted to categorize process conditions with intermittent classifications between in control and out of control. Finally, a realistic example to control surface roughness on the turning process in producing optical lenses is illustrated to demonstrate their data-adaptability and human-acceptance of those integrated methodologies under fuzzy-data environments.

Suggested Citation

  • Ming-Hung Shu & Dinh-Chien Dang & Thanh-Lam Nguyen & Bi-Min Hsu & Ngoc-Son Phan, 2017. "Fuzzy and Control Charts: A Data-Adaptability and Human-Acceptance Approach," Complexity, Hindawi, vol. 2017, pages 1-17, April.
  • Handle: RePEc:hin:complx:4376809
    DOI: 10.1155/2017/4376809
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/4376809.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/4376809.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/4376809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ching-Sen Hsieh & Yu-Wen Chen & Chih-Hung Wu & Tao Huang, 2012. "Characteristics of fuzzy synthetic decision methods for measuring student achievement," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(2), pages 523-543, February.
    2. Alireza Faraz & M. Moghadam, 2007. "Fuzzy Control Chart A Better Alternative for Shewhart Average Chart," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(3), pages 375-385, June.
    3. Lin, Yu-Chang & Chou, Chao-Yu, 2005. "On the design of variable sample size and sampling intervals charts under non-normality," International Journal of Production Economics, Elsevier, vol. 96(2), pages 249-261, May.
    4. Gulbay, Murat & Kahraman, Cengiz, 2006. "Development of fuzzy process control charts and fuzzy unnatural pattern analyses," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 434-451, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Magalhães, M.S. & Costa, A.F.B. & Moura Neto, F.D., 2009. "A hierarchy of adaptive control charts," International Journal of Production Economics, Elsevier, vol. 119(2), pages 271-283, June.
    2. Al-Ebbini, Lina & Oztekin, Asil & Chen, Yao, 2016. "FLAS: Fuzzy lung allocation system for US-based transplantations," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1051-1065.
    3. Lim, S.L. & Khoo, Michael B.C. & Teoh, W.L. & Xie, M., 2015. "Optimal designs of the variable sample size and sampling interval X¯ chart when process parameters are estimated," International Journal of Production Economics, Elsevier, vol. 166(C), pages 20-35.
    4. Stephan Birle & Mohamed Ahmed Hussein & Thomas Becker, 2016. "Management of Uncertainty by Statistical Process Control and a Genetic Tuned Fuzzy System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-11, July.
    5. Liu, J.Y. & Xie, M. & Goh, T.N. & Liu, Q.H. & Yang, Z.H., 2006. "Cumulative count of conforming chart with variable sampling intervals," International Journal of Production Economics, Elsevier, vol. 101(2), pages 286-297, June.
    6. Zhou, Wenhui & Lian, Zhaotong, 2011. "Optimum design of a new VSS-NP chart with adjusting sampling inspection," International Journal of Production Economics, Elsevier, vol. 129(1), pages 8-13, January.
    7. Chang, Chih-Ming & Kao, Chi-Hung & Sha, Wei-Shun & Wu, Wen-Hsiang & Chen, Juei-Chao, 2016. "Multilevel control chart and fuzzy set theory to monitor inpatient falls," Journal of Business Research, Elsevier, vol. 69(6), pages 2284-2288.
    8. Iván E. Villalón-Turrubiates & Rogelio López-Herrera & Jorge L. García-Alcaraz & José R. Díaz-Reza & Arturo Soto-Cabral & Iván González-Lazalde & Gerardo Grijalva-Avila & José L. Rodríguez-Álvarez, 2022. "A Non-Invasive Method to Evaluate Fuzzy Process Capability Indices via Coupled Applications of Artificial Neural Networks and the Placket–Burman DOE," Mathematics, MDPI, vol. 10(16), pages 1-27, August.
    9. Mohammad A. M. Abdel-Aal & Shokri Z. Selim, 2019. "A Generalized Process Targeting Model and an Application Involving a Production Process with Multiple Products," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    10. Chen, Yan-Kwang & Hsieh, Kun-Lin & Chang, Cheng-Chang, 2007. "Economic design of the VSSI control charts for correlated data," International Journal of Production Economics, Elsevier, vol. 107(2), pages 528-539, June.
    11. Mohammad Ahmad & Weihu Cheng, 2022. "A Novel Approach of Fuzzy Control Chart with Fuzzy Process Capability Indices Using Alpha Cut Triangular Fuzzy Number," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    12. A. Azadeh & M. Ameli & N. Alisoltani & S. Motevali Haghighi, 2016. "A unique fuzzy multi-control approach for continuous quality improvement in a radio therapy department," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(6), pages 2469-2493, November.
    13. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    14. Majid Ahmadabadi & Yaghub Farjami & Mohammad Bameni Moghadam, 2012. "A process control method based on five-parameter generalized lambda distribution," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(4), pages 1097-1111, June.
    15. Azam Moraditadi & Soroush Avakhdarestani, 2016. "Development of fuzzy individual x and moving range control chart," International Journal of Productivity and Quality Management, Inderscience Enterprises Ltd, vol. 17(1), pages 82-103.
    16. Yang, Yit-Ming & Su, Chia-Yi & Pearn, W.L., 2010. "Economic design of x¯-control charts for continuous flow process with multiple assignable causes," International Journal of Production Economics, Elsevier, vol. 128(1), pages 110-117, November.
    17. Muhammad Aslam & Ali Hussein AL-Marshadi & Nasrullah Khan, 2019. "A New X-Bar Control Chart for Using Neutrosophic Exponentially Weighted Moving Average," Mathematics, MDPI, vol. 7(10), pages 1-13, October.
    18. M. A. Pasha & M. Bameni Moghadam & M. A. Rahim, 2020. "Effects of non-normal quality data on the integrated model of imperfect maintenance, early replacement, and economic design of $${\bar{X}}$$ X ¯ -control charts," Operational Research, Springer, vol. 20(4), pages 2519-2536, December.
    19. Chao-Yu Chou & Chung-Ho Chen & Hui-Rong Liu, 2006. "Economic Design of EWMA Charts with Variable Sampling Intervals," Quality & Quantity: International Journal of Methodology, Springer, vol. 40(6), pages 879-896, December.
    20. Costa, Antonio Fernando Branco & Machado, Marcela Aparecida Guerreiro, 2011. "Variable parameter and double sampling charts in the presence of correlation: The Markov chain approach," International Journal of Production Economics, Elsevier, vol. 130(2), pages 224-229, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4376809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.