IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2371838.html
   My bibliography  Save this article

Sliding Dynamics of a Filippov Forest-Pest Model with Threshold Policy Control

Author

Listed:
  • Lirong Liu
  • Changcheng Xiang
  • Guangyao Tang
  • Yuan Fu

Abstract

A novel Filippov forest-pest system with threshold policy control (TPC) is established while an economic threshold ( ) is used to guide switching. The aim of our work is to address how to reasonably and successfully control pests by means of sliding dynamics for the Filippov system. On the basis of the above considerations, conditions for the existence and stability of equilibria of subsystems are addressed, and the sliding segments and several types of equilibria of the proposed system are defined. These equilibria include the regular/virtual equilibrium, pseudoequilibrium, boundary equilibrium, and tangent point. Further, not only are the relations between nullclines and equilibria of the Filippov system discussed, but the relations between pseudoequilibrium, nullclines, and the sliding segment are discussed. More importantly, four cases of sliding bifurcations of the Filippov system with respect to different types of equilibria of subsystems are investigated, and the corresponding biological implications concerning integrated pest management (IPM) are analyzed. Our results show that the points of intersection between nullclines are equilibria of the system, and the two endpoints of the sliding segment are on the nullclines. It is also verified that the pseudoequilibrium is the point of intersection of the sliding segment and nullclines of the Filippov system, and the pseudoequilibrium exists on the sliding segment. More interestingly, sliding dynamics analysis reveals that the Filippov system has sliding limit cycles, a bistable state and a stable refuge equilibrium point, and the optimal time and strategy for controlling pests are provided.

Suggested Citation

  • Lirong Liu & Changcheng Xiang & Guangyao Tang & Yuan Fu, 2019. "Sliding Dynamics of a Filippov Forest-Pest Model with Threshold Policy Control," Complexity, Hindawi, vol. 2019, pages 1-17, November.
  • Handle: RePEc:hin:complx:2371838
    DOI: 10.1155/2019/2371838
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/2371838.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/2371838.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/2371838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles Sims & David Aadland & David Finnoff & James Powell, 2013. "How Ecosystem Service Provision Can Increase Forest Mortality from Insect Outbreaks," Land Economics, University of Wisconsin Press, vol. 89(1), pages 154-176.
    2. Yang, Jin & Tang, Guangyao & Tang, Sanyi, 2017. "Modelling the regulatory system of a chemostat model with a threshold window," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 220-235.
    3. Xianghong Zhang & Sanyi Tang, 2013. "Filippov Ratio-Dependent Prey-Predator Model with Threshold Policy Control," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, October.
    4. Chen-Charpentier, B. & Leite, M.C.A., 2014. "A model for coupling fire and insect outbreak in forests," Ecological Modelling, Elsevier, vol. 286(C), pages 26-36.
    5. Sun, Kaibiao & Zhang, Tonghua & Tian, Yuan, 2017. "Dynamics analysis and control optimization of a pest management predator–prey model with an integrated control strategy," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 253-271.
    6. Tang, Sanyi & Xiao, Yanni & Cheke, Robert A., 2008. "Multiple attractors of host–parasitoid models with integrated pest management strategies: Eradication, persistence and outbreak," Theoretical Population Biology, Elsevier, vol. 73(2), pages 181-197.
    7. Changcheng Xiang & Zhongyi Xiang & Yi Yang, 2014. "Dynamic Complexity of a Switched Host-Parasitoid Model with Beverton-Holt Growth Concerning Integrated Pest Management," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-10, May.
    8. Qin, Wenjie & Tan, Xuewen & Tosato, Marco & Liu, Xinzhi, 2019. "Threshold control strategy for a non-smooth Filippov ecosystem with group defense," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leng, Hui & Zhao, Yi & Luo, Jianfeng, 2024. "Simplicial epidemic model with a threshold policy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Huidong & Li, Wei & Zhang, Tonghua, 2024. "Complex dynamic analysis of a big fish-small fish system by using the Poincaré map," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    2. Li, Wenxiu & Chen, Yuming & Huang, Lihong & Wang, Jiafu, 2022. "Global dynamics of a filippov predator-prey model with two thresholds for integrated pest management," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. repec:plo:pone00:0200575 is not listed on IDEAS
    4. Airen Zhou, 2023. "Analysis of an Integrated Pest Management Model with Impulsive Diffusion between Two Regions," Mathematics, MDPI, vol. 11(13), pages 1-18, July.
    5. Zhu, Yuxun & Zhang, Zhengdi & Ji, Jinchen, 2024. "Bifurcations of a Filippov ecological system with an A-type discontinuity boundary," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Xiang, Zhongyi & Tang, Sanyi & Xiang, Changcheng & Wu, Jianhong, 2015. "On impulsive pest control using integrated intervention strategies," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 930-946.
    7. Zhao, Tingting & Xiao, Yanni, 2015. "Plant disease models with nonlinear impulsive cultural control strategies for vegetatively propagated plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 107(C), pages 61-91.
    8. Liu, Yanwei & Zhang, Tonghua & Liu, Xia, 2020. "Investigating the interactions between Allee effect and harvesting behaviour of a single species model: An evolutionary dynamics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    9. Pei, Yongzhen & Shen, Na & Zhao, Jingjing & Yu, Yuping & Chen, Yasong, 2023. "Analysis and simulation of a delayed HIV model with reaction–diffusion and sliding control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 382-405.
    10. Yang, Jin & Tang, Guangyao, 2019. "Piecewise chemostat model with control strategy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 126-142.
    11. David Aadland & Charles Sims & David Finnoff, 2015. "Spatial Dynamics of Optimal Management in Bioeconomic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 545-577, April.
    12. Jiao, Xubin & Liu, Li & Yu, Xiao, 2025. "Rich dynamics of a reaction–diffusion Filippov Leslie–Gower predator–prey model with time delay and discontinuous harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 228(C), pages 339-361.
    13. Toni Bakhtiar & Ihza Rizkia Fitri & Farida Hanum & Ali Kusnanto, 2022. "Mathematical Model of Pest Control Using Different Release Rates of Sterile Insects and Natural Enemies," Mathematics, MDPI, vol. 10(6), pages 1-18, March.
    14. Tang, Sanyi & Xiao, Yanni & Cheke, Robert A., 2010. "Dynamical analysis of plant disease models with cultural control strategies and economic thresholds," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(5), pages 894-921.
    15. Jiménez, María Fernanda & Blé, Gamaliel & Falconi, Manuel, 2022. "A biocontrol agent as a commensal in a plant-pest interaction," Ecological Modelling, Elsevier, vol. 468(C).
    16. Zhenzhen Shi & Yaning Li & Huidong Cheng, 2019. "Dynamic Analysis of a Pest Management Smith Model with Impulsive State Feedback Control and Continuous Delay," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    17. Tian, Yuan & Gao, Yan & Sun, Kaibiao, 2022. "Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    18. Wenjie Qin & Zhengjun Dong & Lidong Huang, 2024. "Impulsive Effects and Complexity Dynamics in the Anti-Predator Model with IPM Strategies," Mathematics, MDPI, vol. 12(7), pages 1-25, March.
    19. Zhu, Yuxun & Zuo, Wenjie & Ji, Jinchen & Zhang, Zhengdi, 2025. "Bifurcations analysis of a 3D Filippov pest-natural enemy system with stage structure for the prey," Applied Mathematics and Computation, Elsevier, vol. 497(C).
    20. Yang, Jin & Tang, Sanyi & Tan, Yuanshun, 2016. "Complex dynamics and bifurcation analysis of host–parasitoid models with impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 522-532.
    21. Liang, Juhua & Tang, Sanyi & Cheke, Robert A., 2016. "Pure Bt-crop and mixed seed sowing strategies for optimal economic profit in the face of pest resistance to pesticides and Bt-corn," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 6-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2371838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.