IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v497y2025ics0096300325000839.html
   My bibliography  Save this article

Bifurcations analysis of a 3D Filippov pest-natural enemy system with stage structure for the prey

Author

Listed:
  • Zhu, Yuxun
  • Zuo, Wenjie
  • Ji, Jinchen
  • Zhang, Zhengdi

Abstract

Pest control is an important application of the Filippov system in ecology and has attracted much attention. Many studies on Filippov pest-natural enemy systems have been done by employing the widely recognized Integrated Pest Management (IPM) strategy. However, those studies primarily focused on planar Filippov models without considering the stage structure of populations. It is well-known that almost all species have a life cycle from immature to mature. Thus, in this paper, we propose a three-dimensional (3D) Filippov system that takes into account the stage structure of the pest population. The weighted sum of two-stage pest populations is set as the control index. Since the discontinuity boundary changes from line to plane, new analytical techniques are developed to investigate the complex dynamics. In particular, abundant sliding bifurcations are detected, especially an enigmatic global bifurcation. This intriguing global bifurcation mechanism may overturn traditional bifurcation analyses, indicating the necessity for further investigations into the dynamical behavior of Filippov systems. Moreover, our results make a strong case for the critical importance of the economic threshold in the IPM strategy. Pest control is found not always effective simply by acting sooner; setting the threshold value too low would cause control failure while setting it too high would invalidate the strategy itself. Detailed biological implications are discussed in the conclusion.

Suggested Citation

  • Zhu, Yuxun & Zuo, Wenjie & Ji, Jinchen & Zhang, Zhengdi, 2025. "Bifurcations analysis of a 3D Filippov pest-natural enemy system with stage structure for the prey," Applied Mathematics and Computation, Elsevier, vol. 497(C).
  • Handle: RePEc:eee:apmaco:v:497:y:2025:i:c:s0096300325000839
    DOI: 10.1016/j.amc.2025.129356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300325000839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2025.129356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Wenxiu & Chen, Yuming & Huang, Lihong & Wang, Jiafu, 2022. "Global dynamics of a filippov predator-prey model with two thresholds for integrated pest management," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Zhu, Yuxun & Zhang, Zhengdi & Ji, Jinchen, 2024. "Bifurcations of a Filippov ecological system with an A-type discontinuity boundary," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Chieregato Vicentin, Daniel & Mancera, Paulo F. A. & Carvalho, Tiago & Fernando Gonçalves, Luiz, 2020. "Mathematical model of an antiretroviral therapy to HIV via Filippov theory," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    4. Qin, Wenjie & Tan, Xuewen & Tosato, Marco & Liu, Xinzhi, 2019. "Threshold control strategy for a non-smooth Filippov ecosystem with group defense," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yuxun & Zhang, Zhengdi & Ji, Jinchen, 2024. "Bifurcations of a Filippov ecological system with an A-type discontinuity boundary," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Li, Wenjie & Guan, Yajuan & Cao, Jinde & Xu, Fei, 2024. "Global dynamics and threshold control of a discontinuous fishery ecological system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Airen Zhou, 2023. "Analysis of an Integrated Pest Management Model with Impulsive Diffusion between Two Regions," Mathematics, MDPI, vol. 11(13), pages 1-18, July.
    4. Lirong Liu & Changcheng Xiang & Guangyao Tang & Yuan Fu, 2019. "Sliding Dynamics of a Filippov Forest-Pest Model with Threshold Policy Control," Complexity, Hindawi, vol. 2019, pages 1-17, November.
    5. Wenjie Qin & Zhengjun Dong & Lidong Huang, 2024. "Impulsive Effects and Complexity Dynamics in the Anti-Predator Model with IPM Strategies," Mathematics, MDPI, vol. 12(7), pages 1-25, March.
    6. Li, Wenxiu & Chen, Yuming & Huang, Lihong & Wang, Jiafu, 2022. "Global dynamics of a filippov predator-prey model with two thresholds for integrated pest management," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Zhang, Hongxia & Han, Ping & Guo, Qin, 2023. "Stability and jumping dynamics of a stochastic vegetation ecosystem induced by threshold policy control," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    8. Jiao, Xubin & Liu, Xiuxiang, 2024. "Rich dynamics of a delayed Filippov avian-only influenza model with two-thresholds policy," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Jiao, Xubin & Liu, Li & Yu, Xiao, 2025. "Rich dynamics of a reaction–diffusion Filippov Leslie–Gower predator–prey model with time delay and discontinuous harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 228(C), pages 339-361.
    10. Zhou, Hao & Zhang, Qianqian & Tang, Sanyi, 2025. "Qualitative analysis of the sliding vector field in a Filippov food chain model with integrated pest management strategy," Applied Mathematics and Computation, Elsevier, vol. 490(C).
    11. Zhou, Hao & Tang, Sanyi, 2022. "Bifurcation dynamics on the sliding vector field of a Filippov ecological system," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    12. Dong, Cunjuan & Xiang, Changcheng & Xiang, Zhongyi & Yang, Yi, 2022. "Global dynamics of a Filippov epidemic system with nonlinear thresholds," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    13. Jiao, Xubin & Li, Xiaodi & Yang, Youping, 2022. "Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:497:y:2025:i:c:s0096300325000839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.