IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1428719.html
   My bibliography  Save this article

Modeling Spatial Social Complex Networks for Dynamical Processes

Author

Listed:
  • Shandeepa Wickramasinghe
  • Onyekachukwu Onyerikwu
  • Jie Sun
  • Daniel ben-Avraham

Abstract

The study of social networks—where people are located, geographically, and how they might be connected to one another—is a current hot topic of interest, because of its immediate relevance to important applications, from devising efficient immunization techniques for the arrest of epidemics to the design of better transportation and city planning paradigms to the understanding of how rumors and opinions spread and take shape over time. We develop a Spatial Social Complex Network (SSCN) model that captures not only essential connectivity features of real-life social networks, including a heavy-tailed degree distribution and high clustering, but also the spatial location of individuals, reproducing Zipf’s law for the distribution of city populations as well as other observed hallmarks. We then simulate Milgram’s Small-World experiment on our SSCN model, obtaining good qualitative agreement with the known results and shedding light on the role played by various network attributes and the strategies used by the players in the game. This demonstrates the potential of the SSCN model for the simulation and study of the many social processes mentioned above, where both connectivity and geography play a role in the dynamics.

Suggested Citation

  • Shandeepa Wickramasinghe & Onyekachukwu Onyerikwu & Jie Sun & Daniel ben-Avraham, 2018. "Modeling Spatial Social Complex Networks for Dynamical Processes," Complexity, Hindawi, vol. 2018, pages 1-12, February.
  • Handle: RePEc:hin:complx:1428719
    DOI: 10.1155/2018/1428719
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/1428719.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/1428719.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/1428719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    2. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    3. Yury A Malkov & Alexander Ponomarenko, 2016. "Growing Homophilic Networks Are Natural Navigable Small Worlds," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunfei Li & Diego Rybski & Jürgen P. Kropp, 2021. "Singularity cities," Environment and Planning B, , vol. 48(1), pages 43-59, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    2. Miguel Picornell & Tomás Ruiz & Maxime Lenormand & José Ramasco & Thibaut Dubernet & Enrique Frías-Martínez, 2015. "Exploring the potential of phone call data to characterize the relationship between social network and travel behavior," Transportation, Springer, vol. 42(4), pages 647-668, July.
    3. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    4. Varga, Levente & Tóth, Géza & Néda, Zoltán, 2017. "An improved radiation model and its applicability for understanding commuting patterns in Hungary," MPRA Paper 76806, University Library of Munich, Germany.
    5. Magdziarz, M. & Scheffler, H.P. & Straka, P. & Zebrowski, P., 2015. "Limit theorems and governing equations for Lévy walks," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4021-4038.
    6. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    7. Medino, Ary V. & Lopes, Sílvia R.C. & Morgado, Rafael & Dorea, Chang C.Y., 2012. "Generalized Langevin equation driven by Lévy processes: A probabilistic, numerical and time series based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 572-581.
    8. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Peter Biddle & Paul England & Marcus Peinado & Bryan Willman, 2003. "The Darknet and the Future of Content Distribution," Levine's Working Paper Archive 618897000000000636, David K. Levine.
    10. Chen, Ning & Zhu, Xuzhen & Chen, Yanyan, 2019. "Information spreading on complex networks with general group distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 671-676.
    11. Camille Roth & Soong Moon Kang & Michael Batty & Marc Barthélemy, 2011. "Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    12. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    13. Joost Berkhout & Bernd F. Heidergott, 2019. "Analysis of Markov Influence Graphs," Operations Research, INFORMS, vol. 67(3), pages 892-904, May.
    14. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.
    15. Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
    16. Khalid Bakhshaliyev & Mehmet Hadi Gunes, 2020. "Generation of 2-mode scale-free graphs for link-level internet topology modeling," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
    17. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    18. Nicolas Jonard & R. Cowan & B. Sanditov, 2009. "Fits and Misfits : Technological Matching and R & D Networks," DEM Discussion Paper Series 09-12, Department of Economics at the University of Luxembourg.
    19. Barmak, D.H. & Dorso, C.O. & Otero, M., 2016. "Modelling dengue epidemic spreading with human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 129-140.
    20. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1428719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.