IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1222-d104476.html
   My bibliography  Save this article

Experimental and Numerical Research of the Thermal Properties of a PCM Window Panel

Author

Listed:
  • Martin Koláček

    (The Department of Automation and Control Engineering, Faculty of Applied Informatics, Thomas Bata University, 76001 Zlín, Czech Republic)

  • Hana Charvátová

    (The Department of Automation and Control Engineering, Faculty of Applied Informatics, Thomas Bata University, 76001 Zlín, Czech Republic)

  • Stanislav Sehnálek

    (The Department of Automation and Control Engineering, Faculty of Applied Informatics, Thomas Bata University, 76001 Zlín, Czech Republic)

Abstract

This paper reports the experimental and simulation analysis of a window system incorporating Phase Change Materials (PCMs). In this study, the latent heat storage material is exploited to increase the thermal mass of the building component. A PCM-filled window can increase the possibilities of storage energy from solar radiation and reduce the heating cooling demand. The presented measurements were performed on a specific window panel that integrates a PCM. The PCM window panel consists of four panes of safety glass with three gaps, of which the first one contains a prismatic glass, the second a krypton gas, and the last one a PCM. New PCM window panel technology uses the placement of the PCM in the whole space of the window cavity. This technology improves the thermal performance and storage mass of the window panel. The results show the incongruent melting of salt hydrates and the high thermal inertia of the PCM window panel. The simulation data showed that the PCM window panel and the double glazing panel markedly reduced the peak temperature on the interior surface, reduced the air temperature inside the room, and also considerably improved the thermal mass of the building. This means that the heat energy entering the building through the panel is reduced by 66% in the summer cycle.

Suggested Citation

  • Martin Koláček & Hana Charvátová & Stanislav Sehnálek, 2017. "Experimental and Numerical Research of the Thermal Properties of a PCM Window Panel," Sustainability, MDPI, vol. 9(7), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1222-:d:104476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.
    2. Heim, Dariusz, 2010. "Isothermal storage of solar energy in building construction," Renewable Energy, Elsevier, vol. 35(4), pages 788-796.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wieprzkowicz, Anna & Heim, Dariusz, 2020. "Modelling of thermal processes in a glazing structure with temperature dependent optical properties - An example of PCM-window," Renewable Energy, Elsevier, vol. 160(C), pages 653-662.
    2. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    3. Alessandra Battisti & Sandra G. L. Persiani & Manuela Crespi, 2019. "Review and Mapping of Parameters for the Early Stage Design of Adaptive Building Technologies through Life Cycle Assessment Tools," Energies, MDPI, vol. 12(9), pages 1-33, May.
    4. Li, Dong & Wu, Yangyang & Zhang, Guojun & Arıcı, Müslüm & Liu, Changyu & Wang, Fuqiang, 2018. "Influence of glazed roof containing phase change material on indoor thermal environment and energy consumption," Applied Energy, Elsevier, vol. 222(C), pages 343-350.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saffari, Mohammad & de Gracia, Alvaro & Ushak, Svetlana & Cabeza, Luisa F., 2017. "Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1239-1255.
    2. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    3. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    5. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    6. Li, Xinyi & Ma, Ting & Liu, Jun & Zhang, Hao & Wang, Qiuwang, 2018. "Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method," Applied Energy, Elsevier, vol. 222(C), pages 92-103.
    7. Li Huang & Udo Piontek & Lulu Zhuang & Rongyue Zheng & Deqiu Zou, 2023. "Study on Thermal Performance of Electric Heating System with Salt Hydrate-PCM Storage," Energies, MDPI, vol. 16(20), pages 1-21, October.
    8. Lilley, Drew & Lau, Jonathan & Dames, Chris & Kaur, Sumanjeet & Prasher, Ravi, 2021. "Impact of size and thermal gradient on supercooling of phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 290(C).
    9. Š. Pogran & T. Reichstadterová & J. Lendelová & D. Páleš & W. Bieda & M. Bošanský, 2013. "Verification of agro-production building structures affecting the quality of indoor environment in the summer season," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 59(SpecialIs), pages 54-59.
    10. AL-Saadi, Saleh Nasser & Zhai, Zhiqiang (John), 2013. "Modeling phase change materials embedded in building enclosure: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 659-673.
    11. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    12. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M, 2016. "Application of weather forecast in conjunction with price-based method for PCM solar passive buildings – An experimental study," Applied Energy, Elsevier, vol. 163(C), pages 9-18.
    13. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Opaque solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2820-2832.
    14. Mehdaoui, Farah & Hazami, Majdi & Messaouda, Anis & Taghouti, Hichem & Guizani, AmenAllah, 2019. "Thermal testing and numerical simulation of PCM wall integrated inside a test cell on a small scale and subjected to the thermal stresses," Renewable Energy, Elsevier, vol. 135(C), pages 597-607.
    15. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "Application of an active PCM storage system into a building for heating/cooling load reduction," Energy, Elsevier, vol. 210(C).
    16. Kong, Xiangfei & Jie, Pengfei & Yao, Chengqiang & Liu, Yun, 2017. "Experimental study on thermal performance of phase change material passive and active combined using for building application in winter," Applied Energy, Elsevier, vol. 206(C), pages 293-302.
    17. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    18. Jin, Xing & Hu, Huoyan & Shi, Xing & Zhou, Xin & Yang, Liu & Yin, Yonggao & Zhang, Xiaosong, 2018. "A new heat transfer model of phase change material based on energy asymmetry," Applied Energy, Elsevier, vol. 212(C), pages 1409-1416.
    19. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    20. Kuznik, Frédéric & David, Damien & Johannes, Kevyn & Roux, Jean-Jacques, 2011. "A review on phase change materials integrated in building walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 379-391, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1222-:d:104476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.