IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2231-d121987.html
   My bibliography  Save this article

Regional Ecological Risk Assessment in the Huai River Watershed during 2010–2015

Author

Listed:
  • Yan Lu

    (Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng 475004, China
    School of Water Conservancy & Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
    College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China
    Henan Industrial Technology Academy of Spatio-Temporal Big Data, Henan University, Kaifeng 475004, China)

  • Fen Qin

    (Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng 475004, China
    College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China
    Henan Industrial Technology Academy of Spatio-Temporal Big Data, Henan University, Kaifeng 475004, China)

  • Zhongbing Chang

    (Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China)

  • Shuming Bao

    (China Data Center of University of Michigan, Ann Arbor, MI 48106-1248, USA)

Abstract

Ecosystem deterioration has been and is still a serious threat to human survival and regional economic development. Theoretical and methodological challenges exist in assessing ecological risk of watershed ecosystem that is imposed by natural changes or human activities. To fill this research gap, this research proposes an interdisciplinary and quantitative methodology based on some techniques such as the Procedure for Ecological Tiered Assessment of Risk (PETAR), the Entropy, and the Celluar Automata Markov (CA-Markov). We focused on six vulnerable environmental variables, namely land-use change, water quantity, water quality, gross domestic product (GDP), environmental pollutants, and soil erosion in the Huai River watershed in the Henan Province in order to build multi-dimensional quantitative method. Further, the Coupling Coordination Degree Model is constructed, and the “threshold index” is also addressed to reflect the limitation of ecological risk. Our results show that the spatio-temperal distribution of the eco-environmental quality has greatly varied across this study area during different time spans. Natural eco-environmental quality has moderately degraded in 70% of this study area (mainly agricultural region), at a prefectural level from 2000 to 2010, and has slightly improved over the agricultural region (<170 m above sea level) during 2010–2015. However, when considering negative stressors from human social system on the natural ecosystem, the extent and distribution of the ecological risk varied across the whole area during 2000–2015. The results show that there was almost 90.40% of this region under the ecological risk, with varying extents over the study time, e.g., Kaifeng, Shangqiu, Xuchang, and Xinyang, with a moderate deterioration in the eco-environmental quality, and Zhengzhou with a slight deterioration in the eco-environmental quality. This paper provides a valuable perspective for governments at all levels to manage watershed environment resources.

Suggested Citation

  • Yan Lu & Fen Qin & Zhongbing Chang & Shuming Bao, 2017. "Regional Ecological Risk Assessment in the Huai River Watershed during 2010–2015," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2231-:d:121987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Ling Hsu & Xijuan Shen & Haiying Xu & Chunmei Zhang & Hsin-Lung Liu & Yan-Chyuan Shiau, 2021. "Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China," Land, MDPI, vol. 10(11), pages 1-21, October.
    2. Hui Wang & Changchun Song & Kaishan Song, 2020. "Regional Ecological Risk Assessment of Wetlands in the Sanjiang Plain with Respect to Human Disturbance," Sustainability, MDPI, vol. 12(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Hao Wang & Guohua Liu & Zongshan Li & Xin Ye & Bojie Fu & Yihe Lü, 2017. "Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    5. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    6. A. Ogden & J. Innes, 2008. "Climate change adaptation and regional forest planning in southern Yukon, Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(8), pages 833-861, October.
    7. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    8. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    9. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    10. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.
    11. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.
    12. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    13. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    14. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    15. Martín, Beatriz & Alonso, Juan Carlos & Martín, Carlos A. & Palacín, Carlos & Magaña, Marina & Alonso, Javier, 2012. "Influence of spatial heterogeneity and temporal variability in habitat selection: A case study on a great bustard metapopulation," Ecological Modelling, Elsevier, vol. 228(C), pages 39-48.
    16. Shi An & Shaoliang Zhang & Huping Hou & Yiyan Zhang & Haonan Xu & Jie Liang, 2022. "Coupling Coordination Analysis of the Ecology and Economy in the Yellow River Basin under the Background of High-Quality Development," Land, MDPI, vol. 11(8), pages 1-19, August.
    17. Felix Neff & Fränzi Korner-Nievergelt & Emmanuel Rey & Matthias Albrecht & Kurt Bollmann & Fabian Cahenzli & Yannick Chittaro & Martin M. Gossner & Carlos Martínez-Núñez & Eliane S. Meier & Christian , 2022. "Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Jie Li & Kun Jia & Yanxu Liu & Bo Yuan & Mu Xia & Wenwu Zhao, 2021. "Spatiotemporal Distribution of Zika Virus and Its Spatially Heterogeneous Relationship with the Environment," IJERPH, MDPI, vol. 18(1), pages 1-14, January.
    19. Dana H. Mills & Michael L. McKinney, 2024. "Climate Change and Jump Dispersal Drive Invasion of the Rosy Wolfsnail ( Euglandina rosea ) in the United States," Sustainability, MDPI, vol. 16(5), pages 1-14, February.
    20. Giannini, Tereza C. & Acosta, André L. & Garófalo, Carlos A. & Saraiva, Antonio M. & Alves-dos-Santos, Isabel & Imperatriz-Fonseca, Vera L., 2012. "Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil," Ecological Modelling, Elsevier, vol. 244(C), pages 127-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2231-:d:121987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.