IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i4p374-d68296.html
   My bibliography  Save this article

Analysis of Water Resources in Horqin Sandy Land Using Multisource Data from 2003 to 2010

Author

Listed:
  • Zhenzhen Zhao

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China)

  • Aiwen Lin

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China)

  • Jiandi Feng

    (School of Geodesy and Geomatrics, Wuhan University, Wuhan 430079, China)

  • Qian Yang

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China)

  • Ling Zou

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China)

Abstract

Over the past four decades, land use/land cover (LU/LC) change, coupled with persistent drought, has resulted in the decline of groundwater levels in Horqin Sandy Land. Accordingly, this study quantifies changes in LU/LC and groundwater storage (GWS). Furthermore, it investigates the effects of LU/LC changes on GWS. GWS changes are estimated using Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements obtained from July 2003 to December 2010. Soil moisture and snow water equivalent data derived from the Global Land Data Assimilation System (GLDAS) are used to isolate GWS changes from GRACE-derived terrestrial water storage changes. The result shows that the groundwater depletion rate in Horqin Sandy Land is 13.5 ± 1.9 mm·year −1 in 2003–2010, which is consistent with the results of monitoring well stations. LU/LC changes are detected using bitemporal imageries (2003 and 2010) from Landsat Thematic Mapper through the post-classification comparison method. The result shows that LU/LC significantly changed during the aforementioned period. Bare soil and built-up land have increased by 76.6% and 82.2%, respectively, while cropland, vegetation, and water bodies have decreased by 14.1%, 74.5%, and 82.6%, respectively. The analysis of GWS and LU/LC changes shows that LU/LC changes and persistent drought are the main factors that affect groundwater resources.

Suggested Citation

  • Zhenzhen Zhao & Aiwen Lin & Jiandi Feng & Qian Yang & Ling Zou, 2016. "Analysis of Water Resources in Horqin Sandy Land Using Multisource Data from 2003 to 2010," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:4:p:374-:d:68296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/4/374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/4/374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingzhong Li & Yongmei Liu & Mingming Cao & Bing Xue, 2015. "Space-Time Characteristics of Vegetation Cover and Distribution: Case of the Henan Province in China," Sustainability, MDPI, vol. 7(9), pages 1-13, August.
    2. Isabella Velicogna & John Wahr, 2006. "Acceleration of Greenland ice mass loss in spring 2004," Nature, Nature, vol. 443(7109), pages 329-331, September.
    3. Masaharu Motoshita & Yuya Ono & Matthias Finkbeiner & Atsushi Inaba, 2016. "The Effect of Land Use on Availability of Japanese Freshwater Resources and Its Significance for Water Footprinting," Sustainability, MDPI, vol. 8(1), pages 1-13, January.
    4. Dongchun Ma & Chaofan Xian & Jing Zhang & Ruochen Zhang & Zhiyun Ouyang, 2015. "The Evaluation of Water Footprints and Sustainable Water Utilization in Beijing," Sustainability, MDPI, vol. 7(10), pages 1-16, September.
    5. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    6. Anton Sizo & Bram Noble & Scott Bell, 2015. "Futures Analysis of Urban Land Use and Wetland Change in Saskatoon, Canada: An Application in Strategic Environmental Assessment," Sustainability, MDPI, vol. 7(1), pages 1-20, January.
    7. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    8. Arjen Y. Hoekstra & Ashok K. Chapagain & Guoping Zhang, 2015. "Water Footprints and Sustainable Water Allocation," Sustainability, MDPI, vol. 8(1), pages 1-6, December.
    9. Bernardo F. T. Rudorff & Marcos Adami & Joel Risso & Daniel Alves De Aguiar & Bernardo Pires & Daniel Amaral & Leandro Fabiani & Izabel Cecarelli, 2012. "Remote Sensing Images to Detect Soy Plantations in the Amazon Biome—The Soy Moratorium Initiative," Sustainability, MDPI, vol. 4(5), pages 1-15, May.
    10. Murat Yalçıntaş & Melih Bulu & Murat Küçükvar & Hamidreza Samadi, 2015. "A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul," Sustainability, MDPI, vol. 7(8), pages 1-18, August.
    11. Bin Guo & Weihong Li & Jinyun Guo & Chuanfa Chen, 2015. "Risk Assessment of Regional Irrigation Water Demand and Supply in an Arid Inland River Basin of Northwestern China," Sustainability, MDPI, vol. 7(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    2. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    3. R. R. Weerasooriya & L. P. K. Liyanage & R. H. K. Rathnappriya & W. B. M. A. C. Bandara & T. A. N. T. Perera & M. H. J. P. Gunarathna & G. Y. Jayasinghe, 2021. "Industrial water conservation by water footprint and sustainable development goals: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12661-12709, September.
    4. Tasnuva Mahjabin & Susana Garcia & Caitlin Grady & Alfonso Mejia, 2018. "Large cities get more for less: Water footprint efficiency across the US," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-17, August.
    5. Xuehui Pi & Qiuqi Luo & Lian Feng & Yang Xu & Jing Tang & Xiuyu Liang & Enze Ma & Ran Cheng & Rasmus Fensholt & Martin Brandt & Xiaobin Cai & Luke Gibson & Junguo Liu & Chunmiao Zheng & Weifeng Li & B, 2022. "Mapping global lake dynamics reveals the emerging roles of small lakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Chinchu Mohan & Andrew W. Western & Madan Kumar Jha & Yongping Wei, 2022. "Global Assessment of Groundwater Stress Vis-à-Vis Sustainability of Irrigated Food Production," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    7. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    8. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    10. Tan Li & Qingguo Zhang & Ying Zhang, 2018. "Modelling a Compensation Standard for a Regional Forest Ecosystem: A Case Study in Yanqing District, Beijing, China," IJERPH, MDPI, vol. 15(4), pages 1-20, March.
    11. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    12. Bahi, Dhilanveer Teja Singh & Paavola, Jouni, 2023. "Liquid petroleum gas access and consumption expenditure: measuring energy poverty through wellbeing and gender equality in India," LSE Research Online Documents on Economics 120564, London School of Economics and Political Science, LSE Library.
    13. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    14. Shah, M., 2018. "Reforming India’s water governance to meet 21st century challenges: practical pathways to realizing the vision of the Mihir Shah Committee," IWMI Working Papers H049192, International Water Management Institute.
    15. Aparicio, Jesus & Tenza-Abril, Antonio & Borg, Malcolm & Galea, John & Candela, Lucila, 2018. "Agricultural irrigation of vine crops from desalinated and brackish groundwater under an economic perspective. A case study in Siġġiewi, Malta," MPRA Paper 92268, University Library of Munich, Germany, revised 04 Sep 2018.
    16. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    17. Abdulaziz Alqahtani & Tom Sale & Michael J. Ronayne & Courtney Hemenway, 2021. "Demonstration of Sustainable Development of Groundwater through Aquifer Storage and Recovery (ASR)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 429-445, January.
    18. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    19. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    20. Jérôme Texier & Julio Gonçalvès & Agnès Rivière, 2022. "Numerical Assessment of Groundwater Flowpaths below a Streambed in Alluvial Plains Impacted by a Pumping Field," Post-Print hal-03629140, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:4:p:374-:d:68296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.