IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i2p128-d63296.html
   My bibliography  Save this article

Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile

Author

Listed:
  • Douglas Aitken

    (Facultad de Ingeniería, Universidad del Desarrollo, Av. Plaza 700, San Carlos de Apoquindo, Las Condes 7610658, Chile)

  • Diego Rivera

    (Laboratory of Comparative Policy in Water Resources Management, Departamento de Recursos Hídricos, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán 3812120, Chile)

  • Alex Godoy-Faúndez

    (Facultad de Ingeniería, Universidad del Desarrollo, Av. Plaza 700, San Carlos de Apoquindo, Las Condes 7610658, Chile)

  • Eduardo Holzapfel

    (Laboratory of Comparative Policy in Water Resources Management, Departamento de Recursos Hídricos, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán 3812120, Chile)

Abstract

Chile contains some of the driest areas in the world, yet human activities in these areas require large volumes of water, the result is regions experiencing high water scarcity leading to environmental degradation, conflicts and reduced industrial productivity. The aim of this paper was to quantify the water scarcity in the central and northern regions by calculating the water scarcity index—the ratio of annual water demand to availability. A focus of the paper was to determine the impact of the main industries in each region and investigate the benefit of implementing water reduction strategies within these industries. The water resources of each investigated region were found to be greatly overexploited and particularly so in the region of Antofagasta. The mining industry was found to be the greatest water consuming sector in this region and further analysis demonstrated that the degree of water scarcity could be greatly reduced by the implementation of water reduction strategies. The agricultural sector dominated water demand in all other regions and it was found that upgrading irrigation efficiency alongside reducing consumption in mining improved the situation in all regions. Nevertheless, given the scale of water scarcity, further investigation is necessary to obtain more recent and accurate data and analyze alternative strategies.

Suggested Citation

  • Douglas Aitken & Diego Rivera & Alex Godoy-Faúndez & Eduardo Holzapfel, 2016. "Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile," Sustainability, MDPI, vol. 8(2), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:2:p:128-:d:63296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/2/128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/2/128/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanessa Bach & Markus Berger & Natalia Finogenova & Matthias Finkbeiner, 2017. "Assessing the Availability of Terrestrial Biotic Materials in Product Systems (BIRD)," Sustainability, MDPI, vol. 9(1), pages 1-35, January.
    2. Angelo Antoci & Paolo Russu & Elisa Ticci, 2019. "Mining and Local Economies: Dilemma between Environmental Protection and Job Opportunities," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    3. Jose-Luis Palacios & Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    4. Patricia P.A. Henríquez‐piskulich & Constanza Schapheer & Nicolas Vereecken & Cristian Villagra, 2021. "Agroecological strategies to safeguard insect pollinators in biodiversity hotspots: Chile as a case study," ULB Institutional Repository 2013/328659, ULB -- Universite Libre de Bruxelles.
    5. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    6. Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
    7. Roberto Pizarro & Pablo A. Garcia-Chevesich & John E. McCray & Jonathan O. Sharp & Rodrigo Valdés-Pineda & Claudia Sangüesa & Dayana Jaque-Becerra & Pablo Álvarez & Sebastián Norambuena & Alfredo Ibáñ, 2022. "Climate Change and Overuse: Water Resource Challenges during Economic Growth in Coquimbo, Chile," Sustainability, MDPI, vol. 14(6), pages 1-10, March.
    8. Castillo, Gracia Maria Lanza & Engler, Alejandra & Wollni, Meike, 2021. "Planned behavior and social capital: Understanding farmers’ behavior toward pressurized irrigation technologies," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Odell, Scott D., 2021. "Hydrosocial displacements: Sources and impacts of collaboration as a response to water conflict near three Chilean mines," Resources Policy, Elsevier, vol. 74(C).
    10. Patricia A. Henríquez-Piskulich & Constanza Schapheer & Nicolas J. Vereecken & Cristian Villagra, 2021. "Agroecological Strategies to Safeguard Insect Pollinators in Biodiversity Hotspots: Chile as a Case Study," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    11. Dafne Crutchik & José Luis Campos, 2021. "Municipal Wastewater Reuse: Is it a Competitive Alternative to Seawater Desalination?," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    12. Ashwani Kumar Tiwari & Enrico Suozzi & Carlos Silva & Marina De Maio & Mariachiara Zanetti, 2021. "Role of Integrated Approaches in Water Resources Management: Antofagasta Region, Chile," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    13. Leonor Zapién Zapién Serrano & Noemí Ortiz Ortiz Lara & Rafael Ríos Ríos Vera & Diana Cholico-González, 2021. "Removal of Fe(III), Cd(II), and Zn(II) as Hydroxides by Precipitation–Flotation System," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    14. Chih-Hao Wang & Hongwei Dong, 2017. "Responding to the Drought: A Spatial Statistical Approach to Investigating Residential Water Consumption in Fresno, California," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    15. Bach, Vanessa & Finogenova, Natalia & Berger, Markus & Winter, Lisa & Finkbeiner, Matthias, 2017. "Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany," Resources Policy, Elsevier, vol. 53(C), pages 283-299.
    16. David Talbot & Guillaume Barbat, 2020. "Water disclosure in the mining sector: An assessment of the credibility of sustainability reports," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(3), pages 1241-1251, May.
    17. Iskandar Zainuddin Rela & Muhammad Zamrun Firihu & Abd Hair Awang & Marsuki Iswandi & Jalaluddin Abdul Malek & Anas Nikoyan & La Nalefo & Hartina Batoa & Salahuddin Salahuddin, 2021. "Formation of Farming Community Resilience Models for Sustainable Agricultural Development at the Mining Neighborhood in Southeast Sulawesi Indonesia," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    18. Christopher Schulz & Antonio A. R. Ioris, 2017. "The Paradox of Water Abundance in Mato Grosso, Brazil," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    19. Anahí Urquiza & Marco Billi, 2020. "Water markets and social–ecological resilience to water stress in the context of climate change: an analysis of the Limarí Basin, Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 1929-1951, March.
    20. Barbara Ruffino & Giuseppe Campo & Dafne Crutchik & Arturo Reyes & Mariachiara Zanetti, 2022. "Drinking Water Supply in the Region of Antofagasta (Chile): A Challenge between Past, Present and Future," IJERPH, MDPI, vol. 19(21), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:2:p:128-:d:63296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.