A Tripartite Evolutionary Game Study on the Carbon Emission Reduction of Shipping Enterprises Considering Government and Shipper Behavior
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xiaoping Wu & Peng Liu & Qi Wei, 2021. "Analysis on Evolutionary Stability Strategies of Carbon Emission of Logistics Enterprises Based on Carbon Tax," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, December.
- Haiying Zhou & Wenjing Zhang, 2022. "Choice of Emission Control Technology in Port Areas with Customers’ Low-Carbon Preference," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
- Zhihang Bei & Juan Wang & Yalun Li & Hewu Wang & Minghai Li & Feng Qian & Wenqiang Xu, 2024. "Challenges and Solutions of Ship Power System Electrification," Energies, MDPI, vol. 17(13), pages 1-25, July.
- Xinjia Gao & Aoshuang Zhu & Qifeng Yu, 2023. "Exploring the Carbon Abatement Strategies in Shipping Using System Dynamics Approach," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
- Wang, Tingsong & Wang, Xinchang & Meng, Qiang, 2018. "Joint berth allocation and quay crane assignment under different carbon taxation policies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 18-36.
- Zhibo He & Dan Wang & Jiawei Li & Wanwei Fang & Yilin Yang & Mingjun Ji, 2024. "An Evolutionary Stability Study of Zero-Carbon Transition for Shipping Enterprises Considering Dynamic Penalty and Carbon Quota Trading Mechanisms," Sustainability, MDPI, vol. 16(23), pages 1-23, December.
- Sufeng Li & Chenxin Dong & Lei Yang & Xinpeng Gao & Wei Wei & Ming Zhao & Weiqi Xia, 2022. "Research on Evolutionary Game Strategy Selection and Simulation Research of Carbon Emission Reduction of Government and Enterprises under the “Dual Carbon” Goal," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
- Jie Gao & Qingmei Tan & Bo Cui, 2024. "Reducing Carbon Emissions from Coal-Fired Power Plants: An Analysis Using Evolutionary Game Theory," Sustainability, MDPI, vol. 16(23), pages 1-17, December.
- Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
- Tostado-Véliz, Marcos & Horrillo-Quintero, Pablo & García-Triviño, Pablo & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2024. "Optimal sitting and sizing of hydrogen refilling stations in distribution networks under locational marginal prices," Applied Energy, Elsevier, vol. 374(C).
- Ang Yang & Xiangyu Meng & He He & Liang Wang & Jing Gao, 2022. "Towards Optimized ARMGs’ Low-Carbon Transition Investment Decision Based on Real Options," Energies, MDPI, vol. 15(14), pages 1-16, July.
- Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
- Wang, Jian & Zhu, Wenbo, 2023. "Analyzing the development of competition and cooperation among ocean carriers considering the impact of carbon tax policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
- Guoping Tu & Zhe Zan, 2025. "The Green Paradox of New Energy Vehicles: A System Dynamics Analysis," Sustainability, MDPI, vol. 17(9), pages 1-29, April.
- Epameinondas K. Koumaniotis & Fotios D. Kanellos, 2024. "Optimal Routing and Sustainable Operation Scheduling of Large Ships with Integrated Full-Electric Propulsion," Sustainability, MDPI, vol. 16(23), pages 1-18, December.
- Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Xu, Yunzhuo & Guo, Zijian, 2022. "Joint berth allocation and ship loader scheduling under the rotary loading mode in coal export terminals," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 229-260.
- Li, Ruhuan & Zhou, Jun & Qiu, Zitong & Li, Haonan & Li, Jinman & Wu, Ji & Wu, Kai, 2025. "Bi-level optimization of hybrid energy conversion system based on a multi-distinct low-carbon microgrid," Renewable Energy, Elsevier, vol. 239(C).
- Wu, Jiaming & Kulcsár, Balázs & Ahn, Soyoung & Qu, Xiaobo, 2020. "Emergency vehicle lane pre-clearing: From microscopic cooperation to routing decision making," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 223-239.
- Lefeng Cheng & Mengya Zhang & Pengrong Huang & Wentian Lu, 2024. "Game-Theoretic Approaches for Power-Generation Companies’ Decision-Making in the Emerging Green Certificate Market," Sustainability, MDPI, vol. 17(1), pages 1-53, December.
- Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
- Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
- Yuzhe Wu & Jia Ao & Yuhang Ren, 2023. "Allocation of Land Factors in China Looking Forward to 2035: Planning and Market," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
- Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
- Nuno Costa & João Lourenço, 2022. "Bi-Objective Optimization Problems—A Game Theory Perspective to Improve Process and Product," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
- Tomasz Cepowski, 2024. "Utilizing Artificial Neural Network Ensembles for Ship Design Optimization to Reduce Added Wave Resistance and CO 2 Emissions," Energies, MDPI, vol. 17(21), pages 1-22, October.
- Meixian Jiang & Fangzheng Ma & Yuqiu Zhang & Shuying Lv & Zhi Pei & Guanghua Wu, 2024. "Collaborative Scheduling Optimization of Container Port Berths and Cranes under Low-Carbon Environment," Sustainability, MDPI, vol. 16(7), pages 1-26, April.
More about this item
Keywords
carbon emission reduction; evolutionary game theory; government regulation; shipper supervision;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3895-:d:1642730. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.