IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2773-d1616705.html
   My bibliography  Save this article

An Innovative Approach Toward Enhancing the Environmental and Economic Sustainability of Resource Recovery from Hazardous Zn-Bearing Dusts from Electric Arc Furnace Steelmaking

Author

Listed:
  • Timur B. Khaidarov

    (Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
    Engineering Center, Plekhanov Russian University of Economics, 115054 Moscow, Russia)

  • Rita Khanna

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Bekzod B. Khaidarov

    (Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
    Engineering Center, Plekhanov Russian University of Economics, 115054 Moscow, Russia)

  • Kejiang Li

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Dmitrii S. Suvorov

    (Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
    Engineering Center, Plekhanov Russian University of Economics, 115054 Moscow, Russia)

  • Dmitrii A. Metlenkin

    (Engineering Center, Plekhanov Russian University of Economics, 115054 Moscow, Russia)

  • Igor N. Burmistrov

    (Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
    Engineering Center, Plekhanov Russian University of Economics, 115054 Moscow, Russia)

  • Alexander V. Gorokhovsky

    (Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia)

  • Sergey V. Volokhov

    (Directorate for Technical Development and Quality (DTRK), PJSC “Severstal”, 162608 Cherepovets, Russia)

  • Denis V. Kuznetsov

    (Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia)

Abstract

An innovative approach is reported for recovering Fe and Zn resources from hazardous zinc-bearing electric arc furnace dusts (ZBDs) in a sustainable manner. A combination of carbothermal and H 2 reduction were used to overcome challenges associated with the high temperatures of carbothermal reduction and the high costs/limited supplies of hydrogen. In-depth reduction studies were carried out using zinc-rich (17 wt.%), iron-poor (35 wt.%) ZBD; coke oven battery dry quenching dust (CDQD) was used as reductant. Briquettes were prepared by mixing ZBD and CDQD powders in a range of proportions; heat treatments were carried out in flowing H 2 gas at 700 °C–900 °C for 4 h. The reduced products were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and inductively coupled plasma (ICP). The Fe content of the reduced briquettes showed increases between 50 and 150%, depending on composition and reduction temperature; Zn, Pb, Cl, Na, K and S were completely absent. The gaseous elements were collected in cooled traps at the furnace outlet to recover metallic zinc and other phases. The volatile products collected at the outlet (900 °C) contained more than 70% zinc and 6% lead; small amounts of zinc were also present in the metallic phase. The processing temperatures were significantly lower in the combined approach as compared to 100% carbothermal reduction. While reducing energy consumption and limiting the generation of greenhouse gases, this approach has the potential for enhancing the reutilization of hazardous industrial wastes, resource recovery, and economic and environmental sustainability.

Suggested Citation

  • Timur B. Khaidarov & Rita Khanna & Bekzod B. Khaidarov & Kejiang Li & Dmitrii S. Suvorov & Dmitrii A. Metlenkin & Igor N. Burmistrov & Alexander V. Gorokhovsky & Sergey V. Volokhov & Denis V. Kuznetso, 2025. "An Innovative Approach Toward Enhancing the Environmental and Economic Sustainability of Resource Recovery from Hazardous Zn-Bearing Dusts from Electric Arc Furnace Steelmaking," Sustainability, MDPI, vol. 17(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2773-:d:1616705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dierk Raabe & C. Cem Tasan & Elsa A. Olivetti, 2019. "Strategies for improving the sustainability of structural metals," Nature, Nature, vol. 575(7781), pages 64-74, November.
    2. Huaiwei, Zhang & Xin, Hong, 2011. "An overview for the utilization of wastes from stainless steel industries," Resources, Conservation & Recycling, Elsevier, vol. 55(8), pages 745-754.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    2. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Khashayar Razghandi & Emad Yaghmaei, 2020. "Rethinking Filter: An Interdisciplinary Inquiry into Typology and Concept of Filter, Towards an Active Filter Model," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    5. Rahmani, Amir & Aboojafari, Roohallah & Bonyadi Naeini, Ali & Mashayekh, Javad, 2024. "Adoption of digital innovation for resource efficiency and sustainability in the metal industry," Resources Policy, Elsevier, vol. 90(C).
    6. Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Daniela Laura Buruiana & Cristian-Dragos Obreja & Elena Emanuela Herbei & Viorica Ghisman, 2021. "Re-Use of Silico-Manganese Slag," Sustainability, MDPI, vol. 13(21), pages 1-9, October.
    8. Roland W. Scholz & Gerald Steiner, 2022. "The role of transdisciplinarity for mineral economics and mineral resource management: coping with fallacies related to phosphorus in science and practice," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 745-763, December.
    9. Xuyang Zhou & Ali Ahmadian & Baptiste Gault & Colin Ophus & Christian H. Liebscher & Gerhard Dehm & Dierk Raabe, 2023. "Atomic motifs govern the decoration of grain boundaries by interstitial solutes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Farhan Ashraf & Arijit Lodh & Emanuele Pagone & Gustavo M. Castelluccio, 2023. "Revitalising Metallic Materials: A Path towards a Sustainable Circular Economy," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    11. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Mauricio Sánchez-Silva & Jack W. Baker, 2024. "Dynamic Infrastructure Systems: advancing sustainable urbanization and climate change," Environment Systems and Decisions, Springer, vol. 44(3), pages 489-499, September.
    13. Ali Zakeri & Kenneth S. Coley & Leili Tafaghodi, 2023. "Hydrogen-Based Direct Reduction of Iron Oxides: A Review on the Influence of Impurities," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    14. Binglu Zhang & Qisi Zhu & Chi Xu & Changtai Li & Yuan Ma & Zhaoxiang Ma & Sinuo Liu & Ruiwen Shao & Yuting Xu & Baolong Jiang & Lei Gao & Xiaolu Pang & Yang He & Guang Chen & Lijie Qiao, 2022. "Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Thomas E. Graedel & Alessio Miatto, 2022. "Alloy Profusion, Spice Metals, and Resource Loss by Design," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    16. Coman, V. & Robotin, B. & Ilea, P., 2013. "Nickel recovery/removal from industrial wastes: A review," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 229-238.
    17. Bojing Guo & Dingcong Cui & Qingfeng Wu & Yuemin Ma & Daixiu Wei & Kumara L. S. R & Yashan Zhang & Chenbo Xu & Zhijun Wang & Junjie Li & Xin Lin & Jincheng Wang & Xun-li Wang & Feng He, 2025. "Segregation-dislocation self-organized structures ductilize a work-hardened medium entropy alloy," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Jhon Zartha & Gina Orozco & Diana Barreto & Diego García, 2024. "Sustainable Innovation in Organizations: A Look from Processes, Products, and Services," Sustainability, MDPI, vol. 16(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2773-:d:1616705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.