IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p645-d1567902.html
   My bibliography  Save this article

Connectivity, Reliability and Approachability in Public Transport: Some Indicators for Improving Sustainability

Author

Listed:
  • Neila Bhouri

    (Laboratory Cosys/Grettia, University Gustave Eiffel, 14-20 Boulevard Newton, Cité Descartes, Champs sur Marne, 77447 Marne-la-Vallée, France)

  • Tiziana Campisi

    (Department of Engineering & Architecture, University of Enna Kore, Cittadella Universitaria, 94100 Enna, Italy)

  • Maurice Aron

    (Independent Researcher, 48 Rue Florian, 92160 Antony, France)

  • S. M. Hassan Mahdavi

    (Institut VEDECOM, 23bis, Allée des Marronniers, 78000 Versailles, France)

Abstract

The reliability of public transport connectivity is influenced by factors such as route design, frequency, availability and infrastructure. Using a shortest path algorithm, we identify up to “k” space–time paths for each origin–destination pair (OD), considering schedules and maximum tolerable waiting times. We propose four reliability indicators and an approachability indicator to assess transport supply. These indicators are calculated at path, OD and network levels using two sets of equations. This framework enables fleet managers to evaluate and compare strategies to improve connectivity reliability and equity, such as increasing route frequency, optimizing lengths or expanding the network. Enhancing connectivity reliability encourages modal shifts to public transport, while improving approachability minimizes resource usage, contributing to sustainability. An application to the bus network of a city in Brittany, France, demonstrates the practical use of these indicators in evaluating and optimizing transport strategies.

Suggested Citation

  • Neila Bhouri & Tiziana Campisi & Maurice Aron & S. M. Hassan Mahdavi, 2025. "Connectivity, Reliability and Approachability in Public Transport: Some Indicators for Improving Sustainability," Sustainability, MDPI, vol. 17(2), pages 1-31, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:645-:d:1567902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    2. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    3. Benezech, Vincent & Coulombel, Nicolas, 2013. "The value of service reliability," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 1-15.
    4. Szymula, Christopher & Bešinović, Nikola, 2020. "Passenger-centered vulnerability assessment of railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 30-61.
    5. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    6. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    7. Haochun Yang & Yunyi Liang, 2023. "Examining the Connectivity between Urban Rail Transport and Regular Bus Transport," Sustainability, MDPI, vol. 15(9), pages 1-14, May.
    8. Hyun Kim & Yena Song, 2018. "An integrated measure of accessibility and reliability of mass transit systems," Transportation, Springer, vol. 45(4), pages 1075-1100, July.
    9. Agnieszka Gaschi-Uciecha, 2023. "The Problem of Reliability in Public Transport for the Metropolis GMZ Area-Pilots Studies," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    10. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliveira, Eduardo Leal de & Portugal, Licínio da Silva & Porto Junior, Walter, 2016. "Indicators of reliability and vulnerability: Similarities and differences in ranking links of a complex road system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 195-208.
    2. Lichun Chen & Elise Miller-Hooks, 2012. "Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport," Transportation Science, INFORMS, vol. 46(1), pages 109-123, February.
    3. Gu, Yu & Chen, Anthony & Xu, Xiangdong, 2023. "Measurement and ranking of important link combinations in the analysis of transportation network vulnerability envelope buffers under multiple-link disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 118-144.
    4. Watling, David & Balijepalli, N.C., 2012. "A method to assess demand growth vulnerability of travel times on road network links," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 772-789.
    5. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    6. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    7. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    8. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    9. Cheng, Qixiu & Liu, Zhiyuan & Lu, Jiawei & List, George & Liu, Pan & Zhou, Xuesong Simon, 2024. "Using frequency domain analysis to elucidate travel time reliability along congested freeway corridors," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    10. Nima Haghighi & S. Kiavash Fayyaz & Xiaoyue Cathy Liu & Tony H. Grubesic & Ran Wei, 2018. "A Multi-Scenario Probabilistic Simulation Approach for Critical Transportation Network Risk Assessment," Networks and Spatial Economics, Springer, vol. 18(1), pages 181-203, March.
    11. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    12. Siu, Barbara W.Y. & Lo, Hong K., 2008. "Doubly uncertain transportation network: Degradable capacity and stochastic demand," European Journal of Operational Research, Elsevier, vol. 191(1), pages 166-181, November.
    13. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
    14. Yin, Yafeng & Madanat, Samer M. & Lu, Xiao-Yun, 2009. "Robust improvement schemes for road networks under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 198(2), pages 470-479, October.
    15. Patriksson, Michael, 2008. "On the applicability and solution of bilevel optimization models in transportation science: A study on the existence, stability and computation of optimal solutions to stochastic mathematical programs," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 843-860, December.
    16. Ng, ManWo & Szeto, W.Y. & Travis Waller, S., 2011. "Distribution-free travel time reliability assessment with probability inequalities," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 852-866, July.
    17. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    18. Jafino, Bramka Arga, 2021. "An equity-based transport network criticality analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 204-221.
    19. Nagae, Takeshi & Fujihara, Tomo & Asakura, Yasuo, 2012. "Anti-seismic reinforcement strategy for an urban road network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 813-827.
    20. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:645-:d:1567902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.