IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i21p9447-d1778610.html
   My bibliography  Save this article

A Real-World Case Study of Solar Pv Integration for Ev Charging and Residential Energy Demand in Ireland

Author

Listed:
  • Mohammed Albaba

    (Energy Systems Engineering Department, Graduate School of Natural and Applied Sciences, Ankara Yildirim Beyazit University, Ankara 06010, Türkiye)

  • Morgan Pierce

    (SolarSmart Energy Ltd., D17 W267 Dublin, Ireland)

  • Bülent Yeşilata

    (Energy Systems Engineering Department, Graduate School of Natural and Applied Sciences, Ankara Yildirim Beyazit University, Ankara 06010, Türkiye)

Abstract

The integration of residential solar photovoltaic (PV) systems with electric vehicle (EV) charging infrastructure offers significant potential for reducing carbon emissions and enhancing energy autonomy. This study presents a real-world case of a solar-powered EV charging system installed at a residential property in Dublin, Ireland. Unlike prior studies that rely solely on simulation, this work covers the complete process from digital design using OpenSolar to on-site installation and performance evaluation. The system includes 16 high-efficiency solar panels (435 W each), a 4 kW hybrid inverter, a 5.3 kWh lithium-ion battery, and a smart EV charger. Real-time monitoring tools were used to collect energy performance data post-installation. The results indicate that 67% of the household’s solar energy was self-consumed, leading to a 50% reduction in electricity costs. In summer 2024, the client achieved full grid independence and received a €90 credit through feed-in tariffs. The system also enabled free EV charging and generated environmental benefits equivalent to planting 315 trees. This study provides empirical evidence supporting the practical feasibility and economic–environmental advantages of integrated PV–EV systems in temperate climates.

Suggested Citation

  • Mohammed Albaba & Morgan Pierce & Bülent Yeşilata, 2025. "A Real-World Case Study of Solar Pv Integration for Ev Charging and Residential Energy Demand in Ireland," Sustainability, MDPI, vol. 17(21), pages 1-28, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9447-:d:1778610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/21/9447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/21/9447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Soczówka & Michał Lasota & Piotr Franke & Renata Żochowska, 2024. "Method of Determining New Locations for Electric Vehicle Charging Stations Using GIS Tools," Energies, MDPI, vol. 17(18), pages 1-27, September.
    2. Fretzen, Ulrich & Ansarin, Mohammad & Brandt, Tobias, 2021. "Temporal city-scale matching of solar photovoltaic generation and electric vehicle charging," Applied Energy, Elsevier, vol. 282(PA).
    3. Chandra Mouli, G.R. & Bauer, P. & Zeman, M., 2016. "System design for a solar powered electric vehicle charging station for workplaces," Applied Energy, Elsevier, vol. 168(C), pages 434-443.
    4. Fathabadi, Hassan, 2017. "Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology," Energy, Elsevier, vol. 132(C), pages 1-11.
    5. Elma, Onur, 2020. "A dynamic charging strategy with hybrid fast charging station for electric vehicles," Energy, Elsevier, vol. 202(C).
    6. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2024. "A comprehensive framework for electric vehicle charging station siting along highways using weighted sum method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Qiongjie Dai & Jicheng Liu & Qiushuang Wei, 2019. "Optimal Photovoltaic/Battery Energy Storage/Electric Vehicle Charging Station Design Based on Multi-Agent Particle Swarm Optimization Algorithm," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    4. Liu, Zhengke & Ma, Xiaolei & Zhuo, Siyu & Liu, Xiaohan, 2024. "Optimizing shared charging services at sustainable bus charging hubs: A queue theory integration approach," Renewable Energy, Elsevier, vol. 237(PC).
    5. He, Fulin & Fathabadi, Hassan, 2020. "Novel standalone plug-in hybrid electric vehicle charging station fed by solar energy in presence of a fuel cell system used as supporting power source," Renewable Energy, Elsevier, vol. 156(C), pages 964-974.
    6. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Li, Shaojie & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2023. "Building-centric investigation into electric vehicle behavior: A survey-based simulation method for charging system design," Energy, Elsevier, vol. 271(C).
    7. Zhu, Rui & Kondor, Dániel & Cheng, Cheng & Zhang, Xiaohu & Santi, Paolo & Wong, Man Sing & Ratti, Carlo, 2022. "Solar photovoltaic generation for charging shared electric scooters," Applied Energy, Elsevier, vol. 313(C).
    8. Dandan Hu & Doudou Yang & Zhi-Wei Liu, 2025. "Data Siting and Capacity Optimization of Photovoltaic–Storage–Charging Stations Considering Spatiotemporal Charging Demand," Energies, MDPI, vol. 18(13), pages 1-34, June.
    9. Fathabadi, Hassan, 2020. "Novel stand-alone, completely autonomous and renewable energy based charging station for charging plug-in hybrid electric vehicles (PHEVs)," Applied Energy, Elsevier, vol. 260(C).
    10. Figueiredo, Raquel & Nunes, Pedro & Brito, Miguel C., 2017. "The feasibility of solar parking lots for electric vehicles," Energy, Elsevier, vol. 140(P1), pages 1182-1197.
    11. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    12. Simon Steinschaden & José Baptista, 2020. "Development of an Efficient Tool for Solar Charging Station Management for Electric Vehicles," Energies, MDPI, vol. 13(11), pages 1-21, June.
    13. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    14. Panagiotis Michailidis & Iakovos Michailidis & Elias Kosmatopoulos, 2025. "Reinforcement Learning for Electric Vehicle Charging Management: Theory and Applications," Energies, MDPI, vol. 18(19), pages 1-50, October.
    15. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    16. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Heymann, Fabian, 2021. "Spatial connection cost minimization of EV fast charging stations in electric distribution networks using local search and graph theory," Energy, Elsevier, vol. 235(C).
    17. Luo, Lizi & He, Pinquan & Gu, Wei & Sheng, Wanxing & Liu, Keyan & Bai, Muke, 2022. "Temporal-spatial scheduling of electric vehicles in AC/DC distribution networks," Energy, Elsevier, vol. 255(C).
    18. Emilian Szczepański & Renata Żochowska & Mariusz Izdebski & Marianna Jacyna, 2025. "Decision-Making Problems in Urban Transport Decarbonization Strategies: Challenges, Tools, and Methods," Energies, MDPI, vol. 18(15), pages 1-17, July.
    19. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    20. Gong, Ying & Shan, Xiaobiao & Luo, Xiaowei & Pan, Jia & Xie, Tao & Yang, Zhengbao, 2019. "Direction-adaptive energy harvesting with a guide wing under flow-induced oscillations," Energy, Elsevier, vol. 187(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9447-:d:1778610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.