IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i20p9222-d1773984.html
   My bibliography  Save this article

Study on Spatiotemporal Pattern Evolution and Regional Heterogeneity of Carbon Emissions at the County Scale of Major Cities, Inner Mongolia Autonomous Region

Author

Listed:
  • Shibo Wei

    (School of Architecture and Art Design, Inner Mongolia University of Science and Technology, Baotou 014010, China)

  • Yun Xue

    (School of Architecture and Art Design, Inner Mongolia University of Science and Technology, Baotou 014010, China)

  • Meijing Zhang

    (School of Architecture and Art Design, Inner Mongolia University of Science and Technology, Baotou 014010, China)

Abstract

In-depth exploration of the spatial heterogeneity patterns of urban carbon emissions holds significant scientific importance for regional sustainable development. However, few scholars have examined the spatiotemporal characteristics of county-level carbon emissions in Inner Mongolia. This study focuses on the three major cities of Hohhot, Baotou, and Ordos in Inner Mongolia. By integrating NPP-VIIRS nighttime light data, the CLCD (China Land Cover Dataset) dataset, and statistical yearbooks, it quantifies county-level carbon emissions and establishes a spatiotemporal analysis framework of urban morphology–carbon emissions from 2013 to 2021. Six morphological indicators—Class Area (CA), Landscape Shape Index (LSI), Largest Patch Index (LPI), Patch Cohesion Index (COHESION), Patch Density (PD), and Interspersion Juxtaposition Index (IJI)—are employed to represent urban scale, complexity, centrality, compactness, fragmentation, and adjacency, respectively, and their impacts on regional carbon emissions are examined. Using a geographically and temporally weighted regression (GTWR) model, the results indicate the following: (1) from 2013 to 2021, The high-value areas of carbon emissions in the three cities show a clustered distribution centered on the urban districts. The total carbon emissions increased from 20,670 (10 4 t/CO 2 ) to 37,788 (10 4 t/CO 2 ). The overall spatial pattern exhibits a north-to-south increasing gradient, and most areas are projected to experience accelerated carbon emission growth in the future; (2) the global Moran’s I values were all greater than zero and passed the significance tests, indicating that carbon emissions exhibit clustering characteristics; (3) the GTWR analysis revealed significant spatiotemporal heterogeneity in influencing factors, with different cities exhibiting varying directions and strengths of influence at different development stages. The ranking of influencing factors by degree of impact is: CA > LSI > COHESION > LPI > IJI > PD. This study explores urban carbon emissions and their heterogeneity from both temporal and spatial dimensions, providing a novel, more detailed regional perspective for urban carbon emission analysis. The findings enrich research on carbon emissions in Inner Mongolia and offer theoretical support for regional carbon reduction strategies.

Suggested Citation

  • Shibo Wei & Yun Xue & Meijing Zhang, 2025. "Study on Spatiotemporal Pattern Evolution and Regional Heterogeneity of Carbon Emissions at the County Scale of Major Cities, Inner Mongolia Autonomous Region," Sustainability, MDPI, vol. 17(20), pages 1-29, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9222-:d:1773984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/20/9222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/20/9222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen Yang & Bing Xia & Yu Li & Xiaoming Qi & Jing Zhang, 2024. "Prediction and Scenario Simulation of Carbon Emissions Peak of Resource-Based Urban Agglomeration with Industrial Clusters—Case of Hubaoe Urban Agglomeration Inner Mongolia Autonomous Region, China," Energies, MDPI, vol. 17(22), pages 1-20, November.
    2. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    3. Min Gao & Zhifeng Shao & Lei Zhang & Zhi Qiao & Yongkui Yang & Lin Zhao, 2025. "Coupling and Coordination Relationship Between Carbon Emissions from Land Use and High-Quality Economic Development in Inner Mongolia, China," Land, MDPI, vol. 14(2), pages 1-26, February.
    4. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    5. Sheng-Wen Tseng, 2019. "Analysis of Energy-Related Carbon Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    6. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    7. Gang Xu & Tianyi Zeng & Hong Jin & Cong Xu & Ziqi Zhang, 2023. "Spatio-Temporal Variations and Influencing Factors of Country-Level Carbon Emissions for Northeast China Based on VIIRS Nighttime Lighting Data," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    8. Rina Wu & Jiquan Zhang & Yuhai Bao & Feng Zhang, 2016. "Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 8(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Lu & Liu, Wenjing & Li, Zhaoling & Cai, Bofeng & Fujii, Minoru & Luo, Xiao & Chen, Wei & Geng, Yong & Fujita, Tsuyoshi & Le, Yiping, 2021. "Spatial and structural characteristics of CO2 emissions in East Asian megacities and its indication for low-carbon city development," Applied Energy, Elsevier, vol. 284(C).
    2. Chuanlong Li & Yuanqing Li & Kaifang Shi & Qingyuan Yang, 2020. "A Multiscale Evaluation of the Coupling Relationship between Urban Land and Carbon Emissions: A Case Study of Chongqing, China," IJERPH, MDPI, vol. 17(10), pages 1-13, May.
    3. Xiaolei Huang & Jinpei Ou & Yingjian Huang & Shun Gao, 2023. "Exploring the Effects of Socioeconomic Factors and Urban Forms on CO 2 Emissions in Shrinking and Growing Cities," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    4. Jiang Zhu & Xiang Li & Huiming Huang & Xiangdong Yin & Jiangchun Yao & Tao Liu & Jiexuan Wu & Zhangcheng Chen, 2023. "Spatiotemporal Evolution of Carbon Emissions According to Major Function-Oriented Zones: A Case Study of Guangdong Province, China," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    5. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    6. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    7. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    8. Ke Luo & Shuo Chen & Shixi Cui & Yuantao Liao & Yu He & Chunshan Zhou & Shaojian Wang, 2023. "Examining the Overall and Heterogeneous Impacts of Urban Spatial Structure on Carbon Emissions: A Case Study of Guangdong Province, China," Land, MDPI, vol. 12(9), pages 1-19, September.
    9. Bin Liu & Jiehua Lv, 2024. "Spatiotemporal Evolution and Tapio Decoupling Analysis of Energy-Related Carbon Emissions Using Nighttime Light Data: A Quantitative Case Study at the City Scale in Northeast China," Energies, MDPI, vol. 17(19), pages 1-26, September.
    10. Hui Wang & Guifen Liu & Kaifang Shi, 2019. "What Are the Driving Forces of Urban CO 2 Emissions in China? A Refined Scale Analysis between National and Urban Agglomeration Levels," IJERPH, MDPI, vol. 16(19), pages 1-19, September.
    11. Tianjiao Yang & Jing Liu & Haibo Mi & Zhicheng Cao & Yiting Wang & Huichao Han & Jiahui Luan & Zhaoxuan Wang, 2022. "An Estimating Method for Carbon Emissions of China Based on Nighttime Lights Remote Sensing Satellite Images," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    12. Zhenwei Wang & Yi Zeng & Xiaochun Wang & Tianci Gu & Wanxu Chen, 2024. "Impact of Urban Expansion on Carbon Emissions in the Urban Agglomerations of Yellow River Basin, China," Land, MDPI, vol. 13(5), pages 1-20, May.
    13. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    14. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    15. Fan, Fei & Dai, Shangze & Yang, Bo & Ke, Haiqian, 2023. "Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities," Technology in Society, Elsevier, vol. 72(C).
    16. Yao Zhao & Xuena Kong & Mahmood Ahmad & Zahoor Ahmed, 2023. "Digital Economy, Industrial Structure, and Environmental Quality: Assessing the Roles of Educational Investment, Green Innovation, and Economic Globalization," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    17. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    18. Zhixiong Tan & Haili Wu & Qingyang Chen & Jiejun Huang, 2024. "Spatiotemporal Analysis of Air Quality and Its Driving Factors in Beijing’s Main Urban Area," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    19. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    20. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9222-:d:1773984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.