IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i20p9063-d1770169.html
   My bibliography  Save this article

Generative AI for Sustainable Project Management in the Built Environment: Trends, Challenges, and Future Directions

Author

Listed:
  • Khalid K. Naji

    (Department of Civil & Environmental Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar)

  • Murat Gunduz

    (Department of Civil & Environmental Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar)

  • Amr Mohamed

    (Department of Computer Science and Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar)

  • Awad Alomari

    (Engineering Management Department, Qatar University, Doha P.O. Box 2713, Qatar)

Abstract

Generative Artificial Intelligence (GAI) is gaining increasing attention as a catalyst for advancing sustainability within project management for buildings and infrastructure. This paper systematically reviews 173 peer-reviewed publications, including 142 journal and conference papers, to examine the current research landscape. Bibliometric mapping and thematic synthesis reveal expanding applications of GAI in project planning, design optimization, risk management, and sustainability assessment, but adoption remains fragmented across regions and domains. This review identifies persistent challenges that constrain large-scale implementation, including data variability and interoperability gaps, high computational demand, limited regulatory alignment, and ethical and governance concerns, coupled with the absence of standardized evaluation metrics. In response, this paper outlines future research prospects through a structured agenda that emphasizes scalable and generalizable AI models, real-time integration with IoT and digital twins, explainable and secure AI systems, and policy-aligned governance frameworks. These priorities aim to strengthen environmental, social, and economic sustainability outcomes in the built environment. By clarifying current progress and knowledge gaps, this review supports both scholars and practitioners in strengthening the role of GAI in the built environment.

Suggested Citation

  • Khalid K. Naji & Murat Gunduz & Amr Mohamed & Awad Alomari, 2025. "Generative AI for Sustainable Project Management in the Built Environment: Trends, Challenges, and Future Directions," Sustainability, MDPI, vol. 17(20), pages 1-27, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9063-:d:1770169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/20/9063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/20/9063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    2. Yijun Lu & Wei Wu & Xuechuan Geng & Yanchen Liu & Hao Zheng & Miaomiao Hou, 2022. "Multi-Objective Optimization of Building Environmental Performance: An Integrated Parametric Design Method Based on Machine Learning Approaches," Energies, MDPI, vol. 15(19), pages 1-23, September.
    3. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    4. Yesilyurt, Hasan & Dokuz, Yesim & Dokuz, Ahmet Sakir, 2024. "Data-driven energy consumption prediction of a university office building using machine learning algorithms," Energy, Elsevier, vol. 310(C).
    5. Sergiusz Pimenow & Olena Pimenowa & Piotr Prus, 2024. "Challenges of Artificial Intelligence Development in the Context of Energy Consumption and Impact on Climate Change," Energies, MDPI, vol. 17(23), pages 1-34, November.
    6. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    7. Berny Carrera & Kwanho Kim, 2023. "A Regression Framework for Energy Consumption in Smart Cities with Encoder-Decoder Recurrent Neural Networks," Energies, MDPI, vol. 16(22), pages 1-24, November.
    8. Leszek Chomacki & Janusz Rusek & Leszek Słowik, 2022. "Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines," Energies, MDPI, vol. 15(11), pages 1-23, May.
    9. Yun Duan, 2022. "A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    10. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    11. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    12. Gao, Lei & Liu, Tianyuan & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2021. "Comparing deep learning models for multi energy vectors prediction on multiple types of building," Applied Energy, Elsevier, vol. 301(C).
    13. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    14. Sulaiman, Mohd Herwan & Mustaffa, Zuriani, 2024. "Chiller energy prediction in commercial building: A metaheuristic-Enhanced deep learning approach," Energy, Elsevier, vol. 297(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
    2. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    3. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    4. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
    5. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    6. Jiang, Ben & Li, Yu & Rezgui, Yacine & Zhang, Chengyu & Wang, Peng & Zhao, Tianyi, 2024. "Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings," Energy, Elsevier, vol. 299(C).
    7. Tingting Hou & Rengcun Fang & Jinrui Tang & Ganheng Ge & Dongjun Yang & Jianchao Liu & Wei Zhang, 2021. "A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms," Energies, MDPI, vol. 14(22), pages 1-21, November.
    8. Seppo Sierla & Heikki Ihasalo & Valeriy Vyatkin, 2022. "A Review of Reinforcement Learning Applications to Control of Heating, Ventilation and Air Conditioning Systems," Energies, MDPI, vol. 15(10), pages 1-25, May.
    9. Ciurea Iulia-Cristina, 2024. "The Impact of the EU AI Act on the UN Sustainable Development Goals for 2030 – A Text Analysis," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 2857-2870.
    10. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    11. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    12. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    13. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Sepehr Moalem & Roya M. Ahari & Ghazanfar Shahgholian & Majid Moazzami & Seyed Mohammad Kazemi, 2022. "Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
    15. Alessandro Bosisio & Matteo Moncecchi & Andrea Morotti & Marco Merlo, 2021. "Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience," Energies, MDPI, vol. 14(14), pages 1-23, July.
    16. Xiaoyu Chen & Xin Yang & Yue Zhang, 2022. "Investigation on C and ESR Estimation of DC-Link Capacitor in Maglev Choppers Using Artificial Neural Network," Energies, MDPI, vol. 15(22), pages 1-17, November.
    17. Duaa Ashtar & Seyed Sahand Mohammadi Ziabari & Ali Mohammed Mansoor Alsahag, 2025. "Hybrid Forecasting for Sustainable Electricity Demand in The Netherlands Using SARIMAX, SARIMAX-LSTM, and Sequence-to-Sequence Deep Learning Models," Sustainability, MDPI, vol. 17(16), pages 1-22, August.
    18. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    19. Robert Basmadjian & Amirhossein Shaafieyoun, 2023. "Assessing ARIMA-Based Forecasts for the Percentage of Renewables in Germany: Insights and Lessons for the Future," Energies, MDPI, vol. 16(16), pages 1-19, August.
    20. Wang, Bo & Wang, Jianda & Dong, Kangyin & Nepal, Rabindra, 2024. "How does artificial intelligence affect high-quality energy development? Achieving a clean energy transition society," Energy Policy, Elsevier, vol. 186(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9063-:d:1770169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.