IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i1p348-d1560632.html
   My bibliography  Save this article

Climate Change and Meteorological Effects on Building Energy Loads in Pearl River Delta

Author

Listed:
  • Sihao Chen

    (College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China)

  • Yi Yang

    (College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China)

  • Jiangbo Li

    (School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China)

Abstract

Global climate change is significantly altering the energy consumption patterns and outdoor environments of buildings. The current meteorological data utilized for building design exhibit numerous deficiencies. To effectively address the needs of future building usage in design, it is crucial to establish more refined meteorological parameters that accurately reflect the climate of specific geographical locations. Utilizing 60 years of meteorological data from Guangzhou, this study employs the cumulative distribution functions (CDFs) method to define four archetypal meteorological years, providing a robust foundation for subsequent analysis. The findings indicate a significant increase in the frequency of high temperatures and temperature values during the summer months, with an increase of nearly 20% in the cumulative degree hours (CDHs) used for calculating a typical meteorological year (TMY4) over the past 30 years. Additionally, there has been an increase of 0.4–0.7 °C in the air conditioning design daily temperature. The statistics on outdoor calculation parameters for different geographical locations, as well as outdoor design parameters for varying guaranteed rate levels in the Pearl River Delta, reveal a substantial impact on outdoor calculation parameters. The maximum difference in cooling load is approximately 9.3%, with a generally high cooling demand in summer and a relatively low heating demand in winter. Furthermore, the calculation values for different non-guaranteed rates can be applied flexibly to meet the needs of engineering applications. This study provides a valuable reference for updating meteorological parameters in building design. By refining meteorological parameters, this study enables more accurate predictions of energy needs, leading to optimized building designs that reduce energy consumption and greenhouse gas emissions. It supports the development of resilient buildings capable of adapting to changing climatic conditions, thus contributing to long-term environmental sustainability.

Suggested Citation

  • Sihao Chen & Yi Yang & Jiangbo Li, 2025. "Climate Change and Meteorological Effects on Building Energy Loads in Pearl River Delta," Sustainability, MDPI, vol. 17(1), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:348-:d:1560632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    2. Kamal, Rajeev & Moloney, Francesca & Wickramaratne, Chatura & Narasimhan, Arunkumar & Goswami, D.Y., 2019. "Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus," Applied Energy, Elsevier, vol. 246(C), pages 77-90.
    3. Jiang, Yingni, 2010. "Generation of typical meteorological year for different climates of China," Energy, Elsevier, vol. 35(5), pages 1946-1953.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    2. Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
    3. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
    4. Cui, Can & Wang, Zhen & Cai, Bofeng & Peng, Sha & Wang, Yang & Xu, Chengdong, 2021. "Evolution-based CO2 emission baseline scenarios of Chinese cities in 2025," Applied Energy, Elsevier, vol. 281(C).
    5. Michele Libralato & Alessandra De Angelis & Giulia Tornello & Onorio Saro & Paola D’Agaro & Giovanni Cortella, 2021. "Evaluation of Multiyear Weather Data Effects on Hygrothermal Building Energy Simulations Using WUFI Plus," Energies, MDPI, vol. 14(21), pages 1-15, November.
    6. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    8. Younghoon Kwak & Jeonga Kang & Sun-Hye Mun & Young-Sun Jeong & Jung-Ho Huh, 2020. "Development and Application of a Flexible Modeling Approach to Reference Buildings for Energy Analysis," Energies, MDPI, vol. 13(21), pages 1-22, November.
    9. Chan, Lok Shun, 2022. "Neighbouring shading effect on photovoltaic panel system: Its implication to green building certification scheme," Renewable Energy, Elsevier, vol. 188(C), pages 476-490.
    10. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    11. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    12. Kim, Icksung & Kim, Woohyun, 2023. "Application of market-based control with thermal energy storage system for demand limiting and real-time pricing control," Energy, Elsevier, vol. 263(PA).
    13. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    14. Fan Li & Jingxi Su & Bo Sun, 2023. "An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm," Energies, MDPI, vol. 16(9), pages 1-22, April.
    15. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
    16. Shen, Pengyuan & Ji, Yuchen & Zhong, Menglei, 2025. "Performance of district energy system under changing climate: A case study of Shenzhen," Applied Energy, Elsevier, vol. 379(C).
    17. Jacek Kropiwnicki & Mariusz Furmanek & Andrzej Rogala, 2021. "Modular Approach for Modelling Warming up Process in Water Installations with Flow-Regulating Elements," Energies, MDPI, vol. 14(15), pages 1-17, July.
    18. Oluwaseu Kilanko & Sunday O Oyedepo & Joseph O Dirisu & Richard O Leramo & Philip Babalola & Abraham K Aworinde & Mfon Udo & Alexander M Okonkwo & Marvelous I Akomolafe, 2023. "Typical meteorological year data analysis for optimal usage of energy systems at six selected locations in Nigeria," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 637-658.
    19. Chan, A.L.S., 2016. "Generation of typical meteorological years using genetic algorithm for different energy systems," Renewable Energy, Elsevier, vol. 90(C), pages 1-13.
    20. Xiong, Chengyan & Meng, Qinglong & Wei, Ying'an & Luo, Huilong & Lei, Yu & Liu, Jiao & Yan, Xiuying, 2023. "A demand response method for an active thermal energy storage air-conditioning system using improved transactive control: On-site experiments," Applied Energy, Elsevier, vol. 339(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:348-:d:1560632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.