IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8824-d1763284.html
   My bibliography  Save this article

Mathematical Modeling and Optimization of a Two-Layer Metro-Based Underground Logistics System Network: A Case Study of Nanjing

Author

Listed:
  • Jianping Yang

    (School of Civil Engineering, Xuzhou University of Technology, Xuzhou 221116, China)

  • An Shi

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Rongwei Hu

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Na Xu

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Qing Liu

    (College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China)

  • Luxing Qu

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Jianbo Yuan

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

With the surge in urban logistics demand, traditional surface transportation faces challenges, such as traffic congestion and environmental pollution. Leveraging metro systems in metropolitan areas for both passenger commuting and underground logistics presents a promising solution. The metro-based underground logistics system (M-ULS), characterized by extensive coverage and independent right-of-way, has emerged as a potential approach for optimizing urban freight transport. However, existing studies primarily focus on single-line scenarios, lacking in-depth analyses of multi-tier network coordination and dynamic demand responsiveness. This study proposes an optimization framework based on mixed-integer programming and an improved ICSA to address three key challenges in metro freight network planning: balancing passenger and freight demand, optimizing multi-tier node layout, and enhancing computational efficiency for large-scale problem solving. By integrating E-TOPSIS for demand assessment and an adaptive mutation mechanism based on a normal distribution, the solution space is reduced from five to three dimensions, significantly improving algorithm convergence and global search capability. Using the Nanjing metro network as a case study, this research compares the optimization performance of independent line and transshipment-enabled network scenarios. The results indicate that the networked scenario (daily cost: CNY 1.743 million) outperforms the independent line scenario (daily cost: CNY 1.960 million) in terms of freight volume (3.214 million parcels/day) and road traffic alleviation rate (89.19%). However, it also requires a more complex node configuration. This study provides both theoretical and empirical support for planning high-density urban underground logistics systems, demonstrating the potential of multimodal transport networks and intelligent optimization algorithms.

Suggested Citation

  • Jianping Yang & An Shi & Rongwei Hu & Na Xu & Qing Liu & Luxing Qu & Jianbo Yuan, 2025. "Mathematical Modeling and Optimization of a Two-Layer Metro-Based Underground Logistics System Network: A Case Study of Nanjing," Sustainability, MDPI, vol. 17(19), pages 1-28, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8824-:d:1763284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    2. Jiaojiao Li & Jianjun Dong & Rui Ren & Zhilong Chen, 2024. "Modeling Resilience of Metro-Based Urban Underground Logistics System Based on Multi-Layer Interdependent Network," Sustainability, MDPI, vol. 16(22), pages 1-23, November.
    3. Rui Ren & Wanjie Hu & Jianjun Dong & Bo Sun & Yicun Chen & Zhilong Chen, 2019. "A Systematic Literature Review of Green and Sustainable Logistics: Bibliometric Analysis, Research Trend and Knowledge Taxonomy," IJERPH, MDPI, vol. 17(1), pages 1-25, December.
    4. Shukang Zheng & Hanpei Yang & Huan Hu & Chun Liu & Yang Shen & Changjiang Zheng, 2024. "Station Placement for Sustainable Urban Metro Freight Systems Using Complex Network Theory," Sustainability, MDPI, vol. 16(11), pages 1-18, May.
    5. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    6. Qing Liu & Yicun Chen & Wanjie Hu & Jianjun Dong & Bo Sun & Helan Cheng, 2023. "Underground Logistics Network Design for Large-Scale Municipal Solid Waste Collection: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 15(23), pages 1-28, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Di, Zhen & Yang, Lixing & Shi, Jungang & Zhou, Housheng & Yang, Kai & Gao, Ziyou, 2022. "Joint optimization of carriage arrangement and flow control in a metro-based underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 1-23.
    3. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    4. Ringsberg, Henrik, 2023. "Sustainable FLM transport based on IPF transport by ferry in coastal rural areas: A case from Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    5. Yu Duan & Željko Stević & Boris Novarlić & Sarfaraz Hashemkhani Zolfani & Ömer Faruk Görçün & Marko Subotić, 2025. "Application of the Fuzzy MCDM Model for the Selection of a Multifunctional Machine for Sustainable Waste Management," Sustainability, MDPI, vol. 17(6), pages 1-28, March.
    6. Fehn, Fabian & Engelhardt, Roman & Dandl, Florian & Bogenberger, Klaus & Busch, Fritz, 2023. "Integrating parcel deliveries into a ride-pooling service—An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    7. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    8. Agnieszka Merkisz-Guranowska & Natalya Shramenko & Marcin Kiciński & Vladyslav Shramenko, 2023. "Simulation Model for Operational Planning of City Cargo Transportation by Trams in Conditions of Stochastic Demand," Energies, MDPI, vol. 16(10), pages 1-20, May.
    9. Yurii Gutarevych & Vasyl Mateichyk & Jonas Matijošius & Alfredas Rimkus & Igor Gritsuk & Oleksander Syrota & Yevheniy Shuba, 2020. "Improving Fuel Economy of Spark Ignition Engines Applying the Combined Method of Power Regulation," Energies, MDPI, vol. 13(5), pages 1-19, March.
    10. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    11. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    12. Han Zhang & Yongbo Lv & Jianwei Guo, 2022. "New Development Direction of Underground Logistics from the Perspective of Public Transport: A Systematic Review Based on Scientometrics," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    13. Hörsting, Lena & Cleophas, Catherine, 2023. "Scheduling shared passenger and freight transport on a fixed infrastructure," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1158-1169.
    14. Lu, Ying & Wang, Qingling & Huang, Shiyu & Yu, Wenhui & Yao, Shuyue, 2024. "Resilience quantification and recovery strategy simulation for urban underground logistics systems under node and link attacks: A case study of Nanjing city," International Journal of Critical Infrastructure Protection, Elsevier, vol. 47(C).
    15. Machado, Bruno & Pimentel, Carina & Sousa, Amaro de, 2023. "Integration planning of freight deliveries into passenger bus networks: Exact and heuristic algorithms," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    16. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    17. Belma Turan & Vera Hemmelmayr & Allan Larsen & Jakob Puchinger, 2024. "Transition towards sustainable mobility: the role of transport optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(2), pages 435-456, June.
    18. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou, 2022. "On understanding the impacts of shared public transportation on urban traffic and road safety using an agent-based simulation with heterogeneous fleets: a case study of Casablanca city," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 3893-3932, December.
    19. Yiming Xiao & Han Wu & Guohua Wang & Hong Mei, 2021. "Mapping the Worldwide Trends on Energy Poverty Research: A Bibliometric Analysis (1999–2019)," IJERPH, MDPI, vol. 18(4), pages 1-22, February.
    20. Jiaojiao Li & Jianjun Dong & Rui Ren & Zhilong Chen, 2024. "Modeling Resilience of Metro-Based Urban Underground Logistics System Based on Multi-Layer Interdependent Network," Sustainability, MDPI, vol. 16(22), pages 1-23, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8824-:d:1763284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.