IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7856-d1738807.html
   My bibliography  Save this article

Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters

Author

Listed:
  • Giulia Farnocchia

    (Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

  • Carlos E. Gómez-Camacho

    (Technology and Society Laboratory (TSL), Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland)

  • Giuseppe Pipitone

    (Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

  • Roland Hischier

    (Technology and Society Laboratory (TSL), Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland)

  • Raffaele Pirone

    (Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

  • Samir Bensaid

    (Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

Abstract

Globally, winery wastewaters (WWWs) are estimated to account for about 62.5 billion L annually (2021), with COD levels up to 300,000 mg O 2 /L primarily attributed to residual ethanol, posing serious environmental concerns. Conventional treatments are effective in COD removal, but they often miss opportunities for energy recovery and resource valorization. This study investigates the aqueous phase reforming (APR) of ethanol-rich wastewater as an alternative treatment for both COD reduction and energy generation. Two scenarios were assessed: electricity and heat cogeneration (S1) and hydrogen production (S2). Process simulations in Aspen Plus ® V14, based on lab-scale APR data, provided upscaled material and energy flows for techno-economic analysis, life cycle assessment, and energy sustainability analysis of a 2.5 m 3 /h plant. At 75% ethanol conversion, the minimum selling price (MSP) was USD0.80/kWh with a carbon footprint of 0.08 kg CO 2 -eq/kWh for S1 and USD7.00/kg with 2.57 kg CO 2 -eq/kg H 2 for S2. Interestingly, S1 revealed a non-linear trade-off between APR performance and energy integration, with higher ethanol conversion leading to a higher electricity selling price because of the increased heat reactor duty. In both cases, the main contributors to global warming potential (GWP) were platinum extraction/recovery and residual COD treatment. Both scenarios achieved a positive energy balance, with an energy return on investment (EROI) of 1.57 for S1 and 2.71 for S2. This study demonstrates the potential of APR as a strategy for self-sufficient energy valorization and additional revenue generation in wine-producing regions.

Suggested Citation

  • Giulia Farnocchia & Carlos E. Gómez-Camacho & Giuseppe Pipitone & Roland Hischier & Raffaele Pirone & Samir Bensaid, 2025. "Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters," Sustainability, MDPI, vol. 17(17), pages 1-34, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7856-:d:1738807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giuseppe Pipitone & Raffaele Pirone & Samir Bensaid, 2024. "Aqueous Phase Reforming of Dairy Wastewater for Hydrogen Production: An Experimental and Energetic Assessment," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    2. Xu, Chunping & Paone, Emilia & Rodríguez-Padrón, Daily & Luque, Rafael & Mauriello, Francesco, 2020. "Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. R. D. Cortright & R. R. Davda & J. A. Dumesic, 2002. "Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water," Nature, Nature, vol. 418(6901), pages 964-967, August.
    4. Lei Yang & Caixia Hao & Yina Chai, 2018. "Life Cycle Assessment of Commercial Delivery Trucks: Diesel, Plug-In Electric, and Battery-Swap Electric," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yevheniia Ziabina & Tetyana Pimonenko, 2020. "The Green Deal Policy for Renewable Energy: A Bibliometric Analysis," Virtual Economics, The London Academy of Science and Business, vol. 3(4), pages 147-168, October.
    2. Cabrera-Jiménez, Richard & Mateo, Josep Maria & Jiménez, Laureano & Pozo, Carlos, 2025. "Prospective life-cycle assessment of sustainable alternatives for road freight transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    3. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    4. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    5. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    6. Zichong Lyu & Dirk Pons & Yilei Zhang, 2023. "Emissions and Total Cost of Ownership for Diesel and Battery Electric Freight Pickup and Delivery Trucks in New Zealand: Implications for Transition," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    7. Wang, Linhao & Lei, Dongqiang & Ren, Puning & Lv, Yue & Luo, Nengchao & Wang, Zhifeng, 2024. "Experimental study on concentrated light photothermal catalytic glycerol for hydrogen production using a novel linear concentrated light flow reactor," Renewable Energy, Elsevier, vol. 231(C).
    8. Ane Caroline Pereira Borges & Jude Azubuike Onwudili & Heloysa Andrade & Carine Alves & Andrew Ingram & Silvio Vieira de Melo & Ednildo Torres, 2020. "Catalytic Properties and Recycling of NiFe 2 O 4 Catalyst for Hydrogen Production by Supercritical Water Gasification of Eucalyptus Wood Chips," Energies, MDPI, vol. 13(17), pages 1-17, September.
    9. Wang, Jian & Wang, Yincheng & Dong, Xiaoshan & Hu, Yongjie & Tao, Junyu & Kumar, Akash & Yan, Beibei & Chen, Yuxuan & Su, Hong & Chen, Guanyi, 2024. "Insights into behaviors of functional groups in biomass derived products during aqueous phase reforming over Ni/α-MoO3 catalysts," Renewable Energy, Elsevier, vol. 224(C).
    10. Yi Zhang & Mingting Kou & Kaihua Chen & Jiancheng Guan & Yuchen Li, 2016. "Modelling the Basic Research Competitiveness Index (BR-CI) with an application to the biomass energy field," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1221-1241, September.
    11. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Guo, Y. & Wang, S.Z. & Xu, D.H. & Gong, Y.M. & Ma, H.H. & Tang, X.Y., 2010. "Review of catalytic supercritical water gasification for hydrogen production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 334-343, January.
    13. Andrea Temporelli & Paola Cristina Brambilla & Elisabetta Brivio & Pierpaolo Girardi, 2022. "Last Mile Logistics Life Cycle Assessment: A Comparative Analysis from Diesel Van to E-Cargo Bike," Energies, MDPI, vol. 15(20), pages 1-18, October.
    14. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    15. Oliveira, A.S. & Baeza, J.A. & Garcia, D. & Saenz de Miera, B. & Calvo, L. & Rodriguez, J.J. & Gilarranz, M.A., 2020. "Effect of basicity in the aqueous phase reforming of brewery wastewater for H2 production," Renewable Energy, Elsevier, vol. 148(C), pages 889-896.
    16. Queiroz, Sarah S. & Jofre, Fanny M. & Mussatto, Solange I. & Felipe, Maria das Graças A., 2022. "Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Cai, Lei & He, Tianzhi & Xiang, Yanlei & Guan, Yanwen, 2020. "Study on the reaction pathways of steam methane reforming for H2 production," Energy, Elsevier, vol. 207(C).
    18. Menezes, João Paulo da S.Q. & Duarte, Karine R. & Manfro, Robinson L. & Souza, Mariana M.V.M., 2020. "Effect of niobia addition on cobalt catalysts supported on alumina for glycerol steam reforming," Renewable Energy, Elsevier, vol. 148(C), pages 864-875.
    19. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7856-:d:1738807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.