IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v154y2022ics1364032121010583.html
   My bibliography  Save this article

Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess

Author

Listed:
  • Queiroz, Sarah S.
  • Jofre, Fanny M.
  • Mussatto, Solange I.
  • Felipe, Maria das Graças A.

Abstract

Xylitol is a GRAS (Generally Recognized as Safe) polyol commonly used in the food industry and able to promote several benefits to the health. In addition, it can also be used as a building block molecule for the manufacture of different high-value chemicals. Currently, the commercial production of xylitol occurs by chemical route through the catalytic hydrogenation of xylose from lignocellulosic biomass. Since this is an expensive process due to the severe reactional conditions employed, the biotechnological route for xylitol production, which comprises the biological conversion of xylose into xylitol, emerges as a potential lower-cost alternative to obtain this polyol due to the milder process conditions required. However, the biotechnological route still presents important bottlenecks and challenges that impairs the process scaling up. Modern strategies and technologies that can potentially improve xylitol bioproduction include adaptive evolution of microbial strains to enhance their tolerance to inhibitors and the xylose uptake rate during the fermentation step; development of engineered microorganisms to result in higher xylose-to-xylitol bioconversion yields; as well as xylitol purification techniques to improve the recovery yields. Moreover, techno-economic analysis of the overall production chain is essential to identify the process viability for large-scale implementation as well as the steps requiring improvements. These are some key factors discussed in this review, which aims to provide insights for the development of a more economically competitive, less energy demanding and scalable new technology for xylitol production.

Suggested Citation

  • Queiroz, Sarah S. & Jofre, Fanny M. & Mussatto, Solange I. & Felipe, Maria das Graças A., 2022. "Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010583
    DOI: 10.1016/j.rser.2021.111789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121010583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hernández, Valentina & Romero-García, Juan M. & Dávila, Javier A. & Castro, Eulogio & Cardona, Carlos A., 2014. "Techno-economic and environmental assessment of an olive stone based biorefinery," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 145-150.
    2. Landaeta, Roberto & Aroca, Germán & Acevedo, Fernando & Teixeira, José A. & Mussatto, Solange I., 2013. "Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation," Applied Energy, Elsevier, vol. 102(C), pages 124-130.
    3. Xu, Chunping & Paone, Emilia & Rodríguez-Padrón, Daily & Luque, Rafael & Mauriello, Francesco, 2020. "Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinícius P. Shibukawa & Lucas Ramos & Mónica M. Cruz-Santos & Carina A. Prado & Fanny M. Jofre & Gabriel L. de Arruda & Silvio S. da Silva & Solange I. Mussatto & Júlio C. dos Santos, 2023. "Impact of Product Diversification on the Economic Sustainability of Second-Generation Ethanol Biorefineries: A Critical Review," Energies, MDPI, vol. 16(17), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikki Sjulander & Timo Kikas, 2020. "Origin, Impact and Control of Lignocellulosic Inhibitors in Bioethanol Production—A Review," Energies, MDPI, vol. 13(18), pages 1-20, September.
    2. Louw, Jeanne & Dogbe, Eunice S. & Yang, Bin & Görgens, Johann F., 2023. "Prioritisation of biomass-derived products for biorefineries based on economic feasibility: A review on the comparability of techno-economic assessment results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Guirong Wu & Jun Cong Ge & Nag Jung Choi, 2021. "Effect of Ethanol Additives on Combustion and Emissions of a Diesel Engine Fueled by Palm Oil Biodiesel at Idling Speed," Energies, MDPI, vol. 14(5), pages 1-12, March.
    4. Nogueira, Cleitiane da Costa & Padilha, Carlos Eduardo de Araújo & Dantas, Júlia Maria de Medeiros & Medeiros, Fábio Gonçalves Macêdo de & Guilherme, Alexandre de Araújo & Souza, Domingos Fabiano de S, 2021. "In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 180(C), pages 914-936.
    5. Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
    6. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Lucio Bonaccorsi & Antonio Fotia & Angela Malara & Patrizia Frontera, 2020. "Advanced Adsorbent Materials for Waste Energy Recovery," Energies, MDPI, vol. 13(17), pages 1-15, August.
    8. Ostovar, Somayeh & Saravani, Hamideh & Rodríguez-Padrón, Daily, 2021. "Versatile functionalized mesoporous Zr/SBA-15 for catalytic transfer hydrogenation and oxidation reactions," Renewable Energy, Elsevier, vol. 178(C), pages 1070-1083.
    9. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Daniela D. Porcino & Francesco Mauriello & Lucio Bonaccorsi & Giuseppe Tomasello & Emilia Paone & Angela Malara, 2020. "Recovery of Biomass Fly Ash and HDPE in Innovative Synthetic Lightweight Aggregates for Sustainable Geotechnical Applications," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    11. Jongwon Byun & Young-Lok Cha & Sung-Min Park & Kwang-Soo Kim & Ji-Eun Lee & Yong-Gu Kang, 2020. "Lignocellulose Pretreatment Combining Continuous Alkaline Single-Screw Extrusion and Ultrasonication to Enhance Biosugar Production," Energies, MDPI, vol. 13(21), pages 1-12, October.
    12. Manhongo, T.T. & Chimphango, A. & Thornley, P. & Röder, M., 2021. "An economic viability and environmental impact assessment of mango processing waste-based biorefineries for co-producing bioenergy and bioactive compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.