IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124010486.html

Experimental study on concentrated light photothermal catalytic glycerol for hydrogen production using a novel linear concentrated light flow reactor

Author

Listed:
  • Wang, Linhao
  • Lei, Dongqiang
  • Ren, Puning
  • Lv, Yue
  • Luo, Nengchao
  • Wang, Zhifeng

Abstract

Developing a suitable scale-up photothermal reactor is important for the application of solar photothermal catalytic hydrogen(H2) production from biomass. Herein, Ru nanoparticles loaded on TiO2 were used as photocatalysts to catalyze hydrogen production from glycerol. A novel linear concentrated light flow reactor (LCLFR) was designed and installed. The effects of concentrated light intensity and thermal energy were investigated on the hydrogen production performance of LCLFR. The optical performance of the reactor was evaluated using Monte Carlo ray tracing method and experimentally validated. The spectral absorption and the photothermal conversion properties of Ru/TiO2 photocatalysts in the LCLFR were analyzed with different concentration light intensity. The results showed that both concentrated light and temperature could significantly enhance the hydrogen production performance of glycerol catalyzed by Ru/TiO2. Notably, the promotion of hydrogen production rates by concentrated light becomes stronger at elevated temperatures.

Suggested Citation

  • Wang, Linhao & Lei, Dongqiang & Ren, Puning & Lv, Yue & Luo, Nengchao & Wang, Zhifeng, 2024. "Experimental study on concentrated light photothermal catalytic glycerol for hydrogen production using a novel linear concentrated light flow reactor," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010486
    DOI: 10.1016/j.renene.2024.120980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124010486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Seadira, Tumelo W.P. & Masuku, Cornelius M. & Scurrell, Michael S., 2020. "Solar photocatalytic glycerol reforming for hydrogen production over Ternary Cu/THS/graphene photocatalyst: Effect of Cu and graphene loading," Renewable Energy, Elsevier, vol. 156(C), pages 84-97.
    2. Silva, Joel M. & Soria, M.A. & Madeira, Luis M., 2015. "Challenges and strategies for optimization of glycerol steam reforming process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1187-1213.
    3. Ruiz-Aguirre, A. & Villachica-Llamosas, J.G. & Polo-López, M.I. & Cabrera-Reina, A. & Colón, G. & Peral, J. & Malato, S., 2022. "Assessment of pilot-plant scale solar photocatalytic hydrogen generation with multiple approaches: Valorization, water decontamination and disinfection," Energy, Elsevier, vol. 260(C).
    4. Li, Zhijing & Lei, Hui & Kan, Ankang & Xie, Huaqing & Yu, Wei, 2021. "Photothermal applications based on graphene and its derivatives: A state-of-the-art review," Energy, Elsevier, vol. 216(C).
    5. Fenoll, José & Garrido, Isabel & Flores, Pilar & Hellín, Pilar & Vela, Nuria & Navarro, Ginés & García-García, José & Navarro, Simón, 2019. "Implementation of a new modular facility to detoxify agro-wastewater polluted with neonicotinoid insecticides in farms by solar photocatalysis," Energy, Elsevier, vol. 175(C), pages 722-729.
    6. Sun, Zhen & Wang, Junxiang & Lu, Sen & Zhang, Guan, 2022. "Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst," Renewable Energy, Elsevier, vol. 197(C), pages 151-160.
    7. Kandy, Mufeedah Muringa & Gaikar, Vilas G., 2019. "Enhanced photocatalytic reduction of CO2 using CdS/Mn2O3 nanocomposite photocatalysts on porous anodic alumina support with solar concentrators," Renewable Energy, Elsevier, vol. 139(C), pages 915-923.
    8. Kostyniuk, Andrii & Bajec, David & Likozar, Blaž, 2021. "Catalytic hydrogenation, hydrocracking and isomerization reactions of biomass tar model compound mixture over Ni-modified zeolite catalysts in packed bed reactor," Renewable Energy, Elsevier, vol. 167(C), pages 409-424.
    9. Alves, Ingrid R.F.S. & Mahler, Claudio F. & Oliveira, Luciano B. & Reis, Marcelo M. & Bassin, João P., 2022. "Investigating the effect of crude glycerol from biodiesel industry on the anaerobic co-digestion of sewage sludge and food waste in ternary mixtures," Energy, Elsevier, vol. 241(C).
    10. Xu, Chunping & Paone, Emilia & Rodríguez-Padrón, Daily & Luque, Rafael & Mauriello, Francesco, 2020. "Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    11. Akhbari, Azam & Ibrahim, Shaliza & Ahmad, Muhammad Shakeel, 2023. "Feasibility of semi-pilot scale up-flow anaerobic sludge blanket fixed-film reactor for fermentative bio-hydrogen production from palm oil mill effluent," Renewable Energy, Elsevier, vol. 212(C), pages 612-620.
    12. Zeng, Jia & Xuan, Yimin, 2018. "Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids," Applied Energy, Elsevier, vol. 212(C), pages 809-819.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Mirnezami, Seyed Abolfazl & Zahedi, Alireza & Shayan Nejad, Ardeshir, 2020. "Thermal optimization of a novel solar/hydro/biomass hybrid renewable system for production of low-cost, high-yield, and environmental-friendly biodiesel," Energy, Elsevier, vol. 202(C).
    3. Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
    4. Albukhari, Soha M. & Al-Hajji, L.A. & Ismail, Adel A., 2024. "Construction of n-n heterojunction copper manganese spinel/mesoporous WO3 photocatalyst for efficient H2 evolution rate from aqueous glycerol," Renewable Energy, Elsevier, vol. 228(C).
    5. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    6. Olaf Dybiński & Tomasz Kurkus & Lukasz Szablowski & Arkadiusz Szczęśniak & Jaroslaw Milewski & Aliaksandr Martsinchyk & Pavel Shuhayeu, 2025. "Artificial Neural Network-Based Mathematical Model of Methanol Steam Reforming on the Anode of Molten Carbonate Fuel Cell Based on Experimental Research," Energies, MDPI, vol. 18(11), pages 1-17, June.
    7. Foteini Sakaveli & Maria Petala & Vasilios Tsiridis & Efthymios Darakas, 2024. "Enhancing Methane Yield in Anaerobic Co-Digestion of Primary Sewage Sludge: A Comprehensive Review on Potential Additives and Strategies," Waste, MDPI, vol. 2(1), pages 1-29, January.
    8. Yujun Gou & Jia Han & Yida Li & Yi Qin & Qingan Li & Xiaohui Zhong, 2022. "Research on Anti-Icing Performance of Graphene Photothermal Superhydrophobic Surface for Wind Turbine Blades," Energies, MDPI, vol. 16(1), pages 1-15, December.
    9. Daniela D. Porcino & Francesco Mauriello & Lucio Bonaccorsi & Giuseppe Tomasello & Emilia Paone & Angela Malara, 2020. "Recovery of Biomass Fly Ash and HDPE in Innovative Synthetic Lightweight Aggregates for Sustainable Geotechnical Applications," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    10. Giulia Farnocchia & Carlos E. Gómez-Camacho & Giuseppe Pipitone & Roland Hischier & Raffaele Pirone & Samir Bensaid, 2025. "Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters," Sustainability, MDPI, vol. 17(17), pages 1-34, August.
    11. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2018. "Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions," Applied Energy, Elsevier, vol. 231(C), pages 1132-1145.
    12. Spandana Gonuguntla & Bhavya Jaksani & Aparna Jamma & Chandra Shobha Vennapoosa & Debabrata Chatterjee & Ujjwal Pal, 2024. "Design principle of anti‐corrosive photocatalyst for large‐scale hydrogen production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(4), July.
    13. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    14. Zhu, Guihua & Wang, Lingling & Bing, Naici & Xie, Huaqing & Yu, Wei, 2019. "Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons," Energy, Elsevier, vol. 183(C), pages 747-755.
    15. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    16. Qu, Jian & Shang, Lu & Sun, Qin & Han, Xinyue & Zhou, Guoqing, 2022. "Photo-thermal characteristics of water-based graphene oxide (GO) nanofluids at reverse-irradiation conditions with different irradiation angles for high-efficiency solar thermal energy harvesting," Renewable Energy, Elsevier, vol. 195(C), pages 516-527.
    17. Liu, Yanchao & Dai, Weijiong & Zhang, Lichen & Zheng, Jiajun & Du, Yanze & Zhang, Xiwen & Zhang, Tong & Qin, Bo & Li, Ruifeng, 2024. "A high-efficient beta-zeolitic catalyst for conversion of waste cooking oil towards biodiesel," Renewable Energy, Elsevier, vol. 237(PC).
    18. Ruocco, Concetta & Palma, Vincenzo & Cortese, Marta & Martino, Marco, 2022. "Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 182(C), pages 913-922.
    19. Shi, Lei & Hu, Yanwei & Bai, Yijie & He, Yurong, 2020. "Dynamic tuning of magnetic phase change composites for solar-thermal conversion and energy storage," Applied Energy, Elsevier, vol. 263(C).
    20. Yang, Ruitong & Li, Dong & Arıcı, Müslüm & Salazar, Samanta López & Wu, Yangyang & Liu, Changyu & Yıldız, Çağatay, 2023. "Spectrally selective nanoparticle-enhanced phase change materials: A study on data-driven optical/thermal properties and application of energy-saving glazing under different climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.