IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7615-d1731052.html
   My bibliography  Save this article

Sustainable Analysis of Wind Turbine Blade Fatigue: Simplified Method for Dynamic Load Measurement and Life Estimation

Author

Listed:
  • Cristofer Aguilar Jiménez

    (Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Colonia Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico)

  • Geovanni Hernández Gálvez

    (División de Ciencias Básicas e Ingeniería, Universidad Popular de la Chontalpa, Carretera Cárdenas-Huimanguillo km 2, Ranchería Paso y Playa, Cárdenas 86556, Mexico)

  • José Rafael Dorrego Portela

    (División de Estudios de Posgrado, Universidad del Istmo, Campus Tehuantepec, Ciudad Universitaria S/N, Barrio Santa Cruz, 4a. Sección, Santo Domingo, Tehuantepec 70760, Mexico)

  • Antonio Verde Añorve

    (Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Colonia Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico)

  • Guillermo Ibáñez Duharte

    (Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Colonia Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico)

  • Joel Pantoja Enríquez

    (Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Colonia Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico)

  • Orlando Lastres Danguillecourt

    (Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Colonia Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico)

  • Alberto-Jesus Perea-Moreno

    (Departamento de Física Aplicada, Radiología y Medicina Física, Campus Universitario de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain)

  • David Muñoz-Rodriguez

    (Departamento de Física Aplicada, Radiología y Medicina Física, Campus Universitario de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain)

  • Quetzalcoatl Hernandez-Escobedo

    (Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de Mexico, Campus Juriquilla, Queretaron 76230, Mexico)

Abstract

This study presents a novel approach to addressing the challenges associated with wind turbine blade fatigue, focusing on the development of a simplified method for dynamic load measurement and life estimation. Wind turbine blades are subjected to complex and varied loads during their operational life, leading to fatigue-induced damage that can significantly impact the overall performance and longevity of the turbine. The proposed method integrates advanced sensor technologies and data analytics to capture dynamic loads on the blades more effectively. Dynamic load measurement and fatigue estimation for a wind turbine blade are quite challenging tasks, since the real-time wind-induced load is irregular and stochastic, and the associated load history affects blade fatigue life in complex ways. This paper shows the implementation of a simplified method for damage and life estimation of a 1.5 kW wind turbine blade with an aerodynamic stall-limiting system. The findings from this research contribute to advancing the field of wind energy by providing a streamlined and efficient approach to addressing blade fatigue issues, ultimately promoting the sustainable and economic utilization of wind power resources. The proposed method simplifies the processes of dynamic load measurement and fatigue life estimation by employing a resonance-based approach. This reduces energy and cost requirements compared to forced displacement methods, while maintaining accuracy in replicating damage equivalent loads. Additionally, it avoids the complexities of simulating real-world turbulence by using controlled conditions, ensuring reproducibility.

Suggested Citation

  • Cristofer Aguilar Jiménez & Geovanni Hernández Gálvez & José Rafael Dorrego Portela & Antonio Verde Añorve & Guillermo Ibáñez Duharte & Joel Pantoja Enríquez & Orlando Lastres Danguillecourt & Alberto, 2025. "Sustainable Analysis of Wind Turbine Blade Fatigue: Simplified Method for Dynamic Load Measurement and Life Estimation," Sustainability, MDPI, vol. 17(17), pages 1-30, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7615-:d:1731052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pacheco de Sá Sarmiento, Franciene Izis & Goes Oliveira, Jorge Luiz & Passos, Júlio César, 2022. "Impact of atmospheric stability, wake effect and topography on power production at complex-terrain wind farm," Energy, Elsevier, vol. 239(PC).
    2. Yang, Can & Xiao, Longfei & Deng, Shi & Chen, Peng & Liu, Lei & Cheng, Zhengshun, 2024. "An experimental study on the aerodynamic-induced effects of a semi-submersible floating wind turbine," Renewable Energy, Elsevier, vol. 222(C).
    3. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    4. Lu, Liang & Wu, Haijun & Wu, Jianzhong, 2021. "A case study for the optimization of moment-matching in wind turbine blade fatigue tests with a resonant type exciting approach," Renewable Energy, Elsevier, vol. 174(C), pages 769-785.
    5. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
    6. Kong, C. & Bang, J. & Sugiyama, Y., 2005. "Structural investigation of composite wind turbine blade considering various load cases and fatigue life," Energy, Elsevier, vol. 30(11), pages 2101-2114.
    7. Akpan, Anthony E. & Ben, Ubong C. & Ekwok, Stephen E. & Okolie, Chukwuma J. & Epuh, Emeka E. & Julzarika, Atriyon & Othman, Abdullah & Eldosouky, Ahmed M., 2024. "Technical and performance assessments of wind turbines in low wind speed areas using numerical, metaheuristic and remote sensing procedures," Applied Energy, Elsevier, vol. 357(C).
    8. de Aquino Ferreira, Saulo Custodio & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina, 2022. "Validation of the representativeness of wind speed time series obtained from reanalysis data for Brazilian territory," Energy, Elsevier, vol. 258(C).
    9. Kang, Yujoo & Kim, Hyebin & Lee, Sang, 2023. "Benefits of individual pitch control on offshore wind turbine submerged in upstream wake," Renewable Energy, Elsevier, vol. 217(C).
    10. He, Ruiyang & Yang, Hongxing & Sun, Shilin & Lu, Lin & Sun, Haiying & Gao, Xiaoxia, 2022. "A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control," Applied Energy, Elsevier, vol. 326(C).
    11. Evans, S.P. & Bradney, D.R. & Clausen, P.D., 2018. "Assessing the IEC simplified fatigue load equations for small wind turbine blades: How simple is too simple?," Renewable Energy, Elsevier, vol. 127(C), pages 24-31.
    12. Patrick D. Moroney & Amrit Shankar Verma, 2023. "Durability and Damage Tolerance Analysis Approaches for Wind Turbine Blade Trailing Edge Life Prediction: A Technical Review," Energies, MDPI, vol. 16(24), pages 1-33, December.
    13. Pimenta, Francisco & Ribeiro, Daniel & Román, Adela & Magalhães, Filipe, 2024. "Predictive model for fatigue evaluation of floating wind turbines validated with experimental data," Renewable Energy, Elsevier, vol. 223(C).
    14. Chanprasert, W. & Sharma, R.N. & Cater, J.E. & Norris, S.E., 2022. "Large Eddy Simulation of wind turbine wake interaction in directionally sheared inflows," Renewable Energy, Elsevier, vol. 201(P1), pages 1096-1110.
    15. Chanprasert, W. & Sharma, R.N. & Cater, J.E. & Norris, S.E., 2022. "Large Eddy Simulation of wind turbine fatigue loading and yaw dynamics induced by wake turbulence," Renewable Energy, Elsevier, vol. 190(C), pages 208-222.
    16. Dai, Juchuan & Li, Mimi & Zhang, Fan & Zeng, Huifan, 2024. "Field load testing of wind turbines based on the relational model of strain vs load," Renewable Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
    2. Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
    3. Tu, Yu & Chen, Yaoran & Zhang, Kai & He, Ruiyang & Han, Zhaolong & Zhou, Dai, 2025. "A multi-fidelity framework for power prediction of wind farm under yaw misalignment," Applied Energy, Elsevier, vol. 377(PC).
    4. Houndekindo, Freddy & Ouarda, Taha B.M.J., 2025. "LSTM and Transformer-based framework for bias correction of ERA5 hourly wind speeds," Energy, Elsevier, vol. 328(C).
    5. José Rafael Dorrego Portela & Geovanni Hernández Galvez & Quetzalcoatl Hernandez-Escobedo & Ricardo Saldaña Flores & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & Pascual López de Paz & A, 2022. "Microscale Wind Assessment, Comparing Mesoscale Information and Observed Wind Data," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    6. Tiago R. Lucas Frutuoso & Rui Castro & Ricardo B. Santos Pereira & Alexandra Moutinho, 2025. "Advancements in Wind Farm Control: Modelling and Multi-Objective Optimization Through Yaw-Based Wake Steering," Energies, MDPI, vol. 18(9), pages 1-29, April.
    7. Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
    8. He, Ruiyang & Yang, Hongxing & Lu, Lin & Gao, Xiaoxia, 2024. "Site-specific wake steering strategy for combined power enhancement and fatigue mitigation within wind farms," Renewable Energy, Elsevier, vol. 225(C).
    9. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    10. Cuesta, Jokin & Leturiondo, Urko & Vidal, Yolanda & Pozo, Francesc, 2025. "A review of prognostics and health management techniques in wind energy," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    11. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    12. Kerschbaum, Alina & Trentmann, Lennart & Hanel, Andreas & Fendt, Sebastian & Spliethoff, Hartmut, 2025. "Methods for analysing renewable energy potentials in energy system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    13. Boudy Bilal & Kaan Yetilmezsoy & Mohammed Ouassaid, 2024. "Benchmarking of Various Flexible Soft-Computing Strategies for the Accurate Estimation of Wind Turbine Output Power," Energies, MDPI, vol. 17(3), pages 1-36, February.
    14. Xiao Chen & Wei Zhao & Xiao Lu Zhao & Jian Zhong Xu, 2014. "Failure Test and Finite Element Simulation of a Large Wind Turbine Composite Blade under Static Loading," Energies, MDPI, vol. 7(4), pages 1-24, April.
    15. Balakrishnan, Raj Kiran & Son, Eunkuk & Hur, Sung-ho, 2024. "Optimization of wind farm power output using wake redirection control," Renewable Energy, Elsevier, vol. 235(C).
    16. Xu, Zongyuan & Gao, Xiaoxia & Zhang, Huanqiang & Lv, Tao & Han, Zhonghe & Zhu, Xiaoxun & Wang, Yu, 2023. "Analysis of the anisotropy aerodynamic characteristics of downstream wind turbine considering the 3D wake expansion based on coupling method," Energy, Elsevier, vol. 263(PD).
    17. Rakib, M.I. & Evans, S.P. & Clausen, P.D., 2020. "Measured gust events in the urban environment, a comparison with the IEC standard," Renewable Energy, Elsevier, vol. 146(C), pages 1134-1142.
    18. He, Yuhang & Han, Xingxing & Xu, Chang & Cheng, Zhe & Wang, Jincheng & Liu, Wei & Xu, Dong, 2023. "Sensitivity of simulated wind power under diverse spatial scales and multiple terrains using the weather research and forecasting model," Energy, Elsevier, vol. 285(C).
    19. Wang, Wenwen & Kong, Xiaobing & Li, Gangqiang & Liu, Xiangjie & Ma, Lele & Liu, Wenting & Lee, Kwang Y., 2024. "Wind farm control using distributed economic MPC scheme under the influence of wake effect," Energy, Elsevier, vol. 309(C).
    20. Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7615-:d:1731052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.