IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7599-d1730739.html
   My bibliography  Save this article

Enhanced Optimization Strategies for No-Wait Flow Shop Scheduling with Sequence-Dependent Setup Times: A Hybrid NEH-GRASP Approach for Minimizing the Total Weighted Flow Time and Energy Cost

Author

Listed:
  • Hafsa Mimouni

    (PCMT Laboratory, National Graduate School of Arts and Crafts, Mohamed V University, Rabat 10100, Morocco)

  • Abdelilah Jalid

    (PCMT Laboratory, National Graduate School of Arts and Crafts, Mohamed V University, Rabat 10100, Morocco)

  • Said Aqil

    (LISIME Laboratory, National Graduate School of Arts and Crafts, Hassan II University, Casablanca 20360, Morocco)

Abstract

Efficient production scheduling is a key challenge in industrial operations and continues to attract significant interest within the field of operations research. This paper investigates a range of methodological approaches designed to solve the permutation flow shop scheduling problem (PFSP) with sequence-dependent setup times (SDST). The main objective is to minimize the total weighted flow time (TWFT) while ensuring a no-wait production environment. The proposed solution strategy is based on using algorithms with a mixed integer linear programming (MILP) formulation, heuristics, and their combination. The heuristics utilized in this paper include an advanced greedy randomized adaptive search procedure (GRASP) based on a priority rule and Hybrid-GRASP-NEH (HGRASP), where Nawaz-Enscore-Ham (NEH) takes place to initiate solutions, based on iterative global and local search methods to refine exploration capabilities and improve solution quality. These approaches were validated using a comprehensive set of experiments across diverse instance sizes that proved the efficiency of HGRASP, with the results showing a high-performance level that closely matched that of the exact MILP approach. Statistical analysis via the Friedman test (χ 2 = 46.75, p = 7.04 × 10 −11 ) confirmed significant performance differences among MILP, GRASP, and HGRASP. While MILP guarantees theoretical optimality, its practical effectiveness was limited by imposed computational time constraints, and HGRASP consistently achieved near-optimal solutions with superior computational efficiency, as demonstrated across diverse instance sizes.

Suggested Citation

  • Hafsa Mimouni & Abdelilah Jalid & Said Aqil, 2025. "Enhanced Optimization Strategies for No-Wait Flow Shop Scheduling with Sequence-Dependent Setup Times: A Hybrid NEH-GRASP Approach for Minimizing the Total Weighted Flow Time and Energy Cost," Sustainability, MDPI, vol. 17(17), pages 1-29, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7599-:d:1730739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    2. Victor Fernandez-Viagas & Luis Sanchez-Mediano & Alvaro Angulo-Cortes & David Gomez-Medina & Jose Manuel Molina-Pariente, 2022. "The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-32, September.
    3. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
    4. Yeh, Wei-Chang & Chu, Ta-Chung, 2018. "A novel multi-distribution multi-state flow network and its reliability optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 209-217.
    5. Hua Xuan & Huixian Zhang & Bing Li, 2019. "An Improved Discrete Artificial Bee Colony Algorithm for Flexible Flowshop Scheduling with Step Deteriorating Jobs and Sequence-Dependent Setup Times," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-13, December.
    6. Ankit Khare & Sunil Agrawal, 2021. "Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 59(23), pages 7266-7282, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Hilbert & Andreas Kleine & Andreas Dellnitz, 2024. "Towards the concept of gas-to-power demand response," Journal of Business Economics, Springer, vol. 94(1), pages 113-135, January.
    2. Markus Hilbert & Andreas Dellnitz & Andreas Kleine, 2023. "Production planning under RTP, TOU and PPA considering a redox flow battery storage system," Annals of Operations Research, Springer, vol. 328(2), pages 1409-1436, September.
    3. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    4. Li, Weidong & Ou, Jinwen, 2024. "Approximation algorithms for scheduling parallel machines with an energy constraint in green manufacturing," European Journal of Operational Research, Elsevier, vol. 314(3), pages 882-893.
    5. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    6. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    7. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    8. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    9. Shun Jia & Yang Yang & Shuyu Li & Shang Wang & Anbang Li & Wei Cai & Yang Liu & Jian Hao & Luoke Hu, 2024. "The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    10. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    11. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    12. Cheng-Fu Huang & Ding-Hsiang Huang & Yi-Kuei Lin, 2022. "System reliability analysis for a cloud-based network under edge server capacity and budget constraints," Annals of Operations Research, Springer, vol. 312(1), pages 217-234, May.
    13. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    14. Dunke, Fabian & Nickel, Stefan, 2025. "Approximate and exact approaches to energy-aware job shop scheduling with dynamic energy tariffs and power purchase agreements," Applied Energy, Elsevier, vol. 380(C).
    15. Niu, Yi-Feng & Xiang, Hai-Yan & Xu, Xiu-Zhen, 2024. "Expected performance evaluation and optimization of a multi-distribution multi-state logistics network based on network reliability," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    16. Lin, Shuai & Jia, Limin & Zhang, Hengrun & Zhang, Pengzhu, 2022. "Reliability of high-speed electric multiple units in terms of the expanded multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. He, Xuan & Pan, Quan-Ke & Gao, Liang & Neufeld, Janis S. & Gupta, Jatinder N.D., 2025. "Minimising Makespan and total tardiness for the flowshop group scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 324(2), pages 436-453.
    18. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    20. Oron, Daniel, 2016. "Scheduling controllable processing time jobs with position-dependent workloads," International Journal of Production Economics, Elsevier, vol. 173(C), pages 153-160.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7599-:d:1730739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.