IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i16p7444-d1726660.html
   My bibliography  Save this article

Revisiting the Basics of Life Cycle Assessment and Lifecycle Thinking

Author

Listed:
  • Elif Kaynak

    (Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden)

  • Imelda Saran Piri

    (School of Future Environments, Auckland University of Technology, Auckland 1010, New Zealand)

  • Oisik Das

    (Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden)

Abstract

Life cycle assessment (LCA) is a standardized tool (ISO 14040) used to evaluate the environmental impacts of products and processes across their entire life cycle, from raw material extraction to end-of-life disposal or recycling. It has become particularly important in the context of engineering materials, where sustainability considerations are critical. Despite challenges such as data quality limitations, variations in system boundary definitions, and methodological inconsistencies, LCA remains an essential tool for assessing and improving product sustainability. This work presents a foundational overview of LCA principles and describes a systematic, step-by-step procedure for its effective application. Additionally, this article revisits the fundamental concepts of carbon footprint (CF) analysis as a complementary tool for quantifying greenhouse gas emissions associated with products and activities. CF analysis underscores the necessity of adopting low-carbon materials and manufacturing processes to minimize embodied energy and reduce environmental emissions. Low-carbon materials are characterized by attributes such as being lightweight, recyclable, renewable, bio-based, locally sourced, and safe for public health. Their development balances the reduction of raw material and resource consumption during production, with increasing product performance, recyclability, and service life, reflecting a cradle-to-cradle, circular economy approach. The integration of LCA and CF methodologies provides an integral framework for assessing environmental performance and supports decision-making processes aligned with global sustainability targets.

Suggested Citation

  • Elif Kaynak & Imelda Saran Piri & Oisik Das, 2025. "Revisiting the Basics of Life Cycle Assessment and Lifecycle Thinking," Sustainability, MDPI, vol. 17(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7444-:d:1726660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/16/7444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/16/7444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Kossoy & Philippe Ambrosi, "undated". "State and Trends of the Carbon Market 2010," World Bank Publications - Reports 13401, The World Bank Group.
    2. Fodha, Mouez & Zaghdoud, Oussama, 2010. "Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve," Energy Policy, Elsevier, vol. 38(2), pages 1150-1156, February.
    3. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2017. "The changing of the relationships between carbon footprints and final demand: Panel data evidence for 40 major countries," Energy Economics, Elsevier, vol. 61(C), pages 8-20.
    4. Thomas Schaubroeck & Simon Schaubroeck & Reinout Heijungs & Alessandra Zamagni & Miguel Brandão & Enrico Benetto, 2021. "Attributional & Consequential Life Cycle Assessment: Definitions, Conceptual Characteristics and Modelling Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-47, July.
    5. Paul Jarvis, 2007. "Never mind the footprint, get the mass right," Nature, Nature, vol. 446(7131), pages 24-24, March.
    6. Steffen Kiemel & Chantal Rietdorf & Maximilian Schutzbach & Robert Miehe, 2022. "How to Simplify Life Cycle Assessment for Industrial Applications—A Comprehensive Review," Sustainability, MDPI, vol. 14(23), pages 1-26, November.
    7. Lau, Lin-Sea & Choong, Chee-Keong & Eng, Yoke-Kee, 2014. "Investigation of the environmental Kuznets curve for carbon emissions in Malaysia: Do foreign direct investment and trade matter?," Energy Policy, Elsevier, vol. 68(C), pages 490-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mu Wang & Yan Zhao & Zongsheng An & Changming Dou, 2025. "Activation of Persulfate by Sulfide-Modified Nanoscale Zero-Valent Iron Supported on Biochar for 2,4-Dichlorophenol Degradation: Efficiency, Sustainability, and Mechanism Investigation," Sustainability, MDPI, vol. 17(19), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daberechi Chikezie Ekwueme & Taiwo Temitope Lasisi & Kayode Kolawole Eluwole, 2023. "Environmental sustainability in Asian countries: Understanding the criticality of economic growth, industrialization, tourism import, and energy use," Energy & Environment, , vol. 34(5), pages 1592-1618, August.
    2. Aslan, Alper & Destek, Mehmet Akif & Okumus, İlyas, 2017. "Sectoral carbon emissions and economic growth in the US: Further evidence from rolling window estimation method," MPRA Paper 106961, University Library of Munich, Germany.
    3. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    4. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    5. Mohamed Abdouli & Sami Hammami, 2018. "The Dynamic Links Between Environmental Quality, Foreign Direct Investment, and Economic Growth in the Middle Eastern and North African Countries (MENA Region)," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 833-853, September.
    6. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    7. Anh-Tu Nguyen & Shih-Hao Lu & Phuc Thanh Thien Nguyen, 2021. "Validating and Forecasting Carbon Emissions in the Framework of the Environmental Kuznets Curve: The Case of Vietnam," Energies, MDPI, vol. 14(11), pages 1-38, May.
    8. Mohamed Abdouli & Sami Hammami, 2020. "Economic Growth, Environment, FDI Inflows, and Financial Development in Middle East Countries: Fresh Evidence from Simultaneous Equation Models," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(2), pages 479-511, June.
    9. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    10. Rehermann, F. & Pablo-Romero, M., 2018. "Economic growth and transport energy consumption in the Latin American and Caribbean countries," Energy Policy, Elsevier, vol. 122(C), pages 518-527.
    11. Alexandra-Anca Purcel, 2020. "New insights into the environmental Kuznets curve hypothesis in developing and transition economies: a literature survey," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 585-631, October.
    12. Yang, Guangfei & Sun, Tao & Wang, Jianliang & Li, Xianneng, 2015. "Modeling the nexus between carbon dioxide emissions and economic growth," Energy Policy, Elsevier, vol. 86(C), pages 104-117.
    13. Bekhet, Hussain Ali & Othman, Nor Salwati, 2018. "The role of renewable energy to validate dynamic interaction between CO2 emissions and GDP toward sustainable development in Malaysia," Energy Economics, Elsevier, vol. 72(C), pages 47-61.
    14. Ayşe Özge Artekin, 2024. "The Long-Run Linkage among the Macroeconomic Factors and CO2 Emissions in terms of Sea Transport Induced EKC Hypothesis in USA," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 1-8, May.
    15. Dilek Temiz Dinç & Ece C. Akdoğan, 2019. "Renewable Energy Production, Energy Consumption and Sustainable Economic Growth in Turkey: A VECM Approach," Sustainability, MDPI, vol. 11(5), pages 1-14, February.
    16. Miloud Lacheheb & A. S. Abdul Rahim & Abdalla Sirag, 2015. "Economic Growth and Carbon Dioxide Emissions: Investigating the Environmental Kuznets Curve Hypothesis in Algeria," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1125-1132.
    17. Mazur Anna & Phutkaradze Zaur & Phutkaradze Jaba, 2015. "Economic Growth and Environmental Quality in the European Union Countries – Is there Evidence for the Environmental Kuznets Curve?," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 45(1), pages 108-126, March.
    18. Zambrano-Monserrate, Manuel A. & Silva-Zambrano, Carlos A. & Davalos-Penafiel, Jose L. & Zambrano-Monserrate, Andrea & Ruano, Maria Alejandra, 2018. "Testing environmental Kuznets curve hypothesis in Peru: The role of renewable electricity, petroleum and dry natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4170-4178.
    19. Mohamed Abdouli & Sami Hammami, 2017. "Economic growth, FDI inflows and their impact on the environment: an empirical study for the MENA countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(1), pages 121-146, January.
    20. Deshan Li & Yanfen Zhao & Rongwei Wu & Jiefang Dong, 2019. "Spatiotemporal Features and Socioeconomic Drivers of PM 2.5 Concentrations in China," Sustainability, MDPI, vol. 11(4), pages 1-18, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7444-:d:1726660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.