IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i14p6303-d1698176.html
   My bibliography  Save this article

Relevance of Ground and Wall Albedo for Outdoor Thermal Comfort in Tropical Savanna Climates: Evidence from Parametric Simulations

Author

Listed:
  • Komi Bernard Bedra

    (School of Architecture and Urban Planning, Hunan City University, Yiyang 413000, China)

  • Jiayu Li

    (School of Architecture and Art, Central South University, Changsha 410083, China)

Abstract

High-albedo ground and wall materials are promoted to mitigate heat stress in tropical climates, yet conflicting evidence driven by climatic and metric variability make their impact on Outdoor Thermal Comfort (OTC) unclear. This study employed parametric simulations to assess how ground and wall albedo affect OTC, measured via the Universal Thermal Climate Index (UTCI) in typical urban canyons. Using ENVI-met, we tested ground albedo (0.2–0.8) and wall albedo (0.05–0.90) with emissivity fixed at 0.9. Findings reveal that ground albedo had a minimal impact on the UTCI (mean amplitude 0.44 °C), while wall albedo reduced the UTCI by up to 2.80 °C, prioritizing wall material selection for heat mitigation. It was also found that the increase in ground albedo offsets the cooling potential of high-albedo walls. Furthermore, differences in the impact under shaded and unshaded areas were observed. These results question assumptions of universal high-albedo benefits, recommending case-specific simulations in urban design.

Suggested Citation

  • Komi Bernard Bedra & Jiayu Li, 2025. "Relevance of Ground and Wall Albedo for Outdoor Thermal Comfort in Tropical Savanna Climates: Evidence from Parametric Simulations," Sustainability, MDPI, vol. 17(14), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6303-:d:1698176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/14/6303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/14/6303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabiani, C. & Pisello, A.L. & Bou-Zeid, E. & Yang, J. & Cotana, F., 2019. "Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance," Applied Energy, Elsevier, vol. 247(C), pages 155-170.
    2. Richenel Bulbaai & Johannes I. M. Halman, 2021. "Energy-Efficient Building Design for a Tropical Climate: A Field Study on the Caribbean Island Curaçao," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    3. Zhiyi Tao & Xiangdong Zhu & Guoqiang Xu & Dezhi Zou & Guo Li, 2023. "A Comparative Analysis of Outdoor Thermal Comfort Indicators Applied in China and Other Countries," Sustainability, MDPI, vol. 15(22), pages 1-36, November.
    4. Daniel Richards & Mahyar Masoudi & Rachel R. Y. Oh & Erik S. Yando & Jingyuan Zhang & Daniel A. Friess & Adrienne Grêt-Regamey & Puay Yok Tan & Peter J. Edwards, 2019. "Global Variation in Climate, Human Development, and Population Density Has Implications for Urban Ecosystem Services," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan Ting Katty Huang & Pierre Masselot & Elie Bou-Zeid & Simone Fatichi & Athanasios Paschalis & Ting Sun & Antonio Gasparrini & Gabriele Manoli, 2023. "Economic valuation of temperature-related mortality attributed to urban heat islands in European cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xi Meng & Jiahui Wang & Shuhan Liu, 2022. "Comparative analysis between constant and variable solar radiation reflectivity for exterior walls in the hot-summer and cold-winter zone [Influence of the copper foam fin (CFF) shapes on thermal p," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 571-580.
    3. Fabiani, C. & Castaldo, V.L. & Pisello, A.L., 2020. "Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building," Applied Energy, Elsevier, vol. 262(C).
    4. Richards, D.R. & Law, A. & Tan, C.S.Y. & Shaikh, S.F.E.A. & Carrasco, L.R. & Jaung, W. & Oh, R.R.Y., 2020. "Rapid urbanisation in Singapore causes a shift from local provisioning and regulating to cultural ecosystem services use," Ecosystem Services, Elsevier, vol. 46(C).
    5. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    6. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Dibyanti Danniswari & Tsuyoshi Honjo & Katsunori Furuya, 2022. "Analysis of Building Height Impact on Land Surface Temperature by Digital Building Height Model Obtained from AW3D30 and SRTM," Geographies, MDPI, vol. 2(4), pages 1-14, September.
    8. Komi Bernard Bedra & Bohong Zheng & Jiayu Li & Xi Luo, 2023. "A Parametric-Simulation Method to Study the Interconnections between Urban-Street-Morphology Indicators and Their Effects on Pedestrian Thermal Comfort in Tropical Summer," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    9. Zhang, Ya & Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2020. "Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management," Applied Energy, Elsevier, vol. 264(C).
    10. Yiting Chen & Zhanbin Li & Peng Li & Yixin Zhang & Hailiang Liu & Jinjin Pan, 2022. "Impacts and Projections of Land Use and Demographic Changes on Ecosystem Services: A Case Study in the Guanzhong Region, China," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    11. Hui Xi & Yating Li & Wanjun Hou, 2025. "Impact of Environmental Factors on Summer Thermal Comfort of Ribbon Waterfront Park in Hot Summer and Cold Winter Regions: A Case Study of Hefei," Sustainability, MDPI, vol. 17(7), pages 1-42, March.
    12. Cibele Eller & Mohamad Rida & Katharina Boudier & Caio Otoni & Gabriela Celani & Lucila Labaki & Sabine Hoffmann, 2021. "Climate-Based Analysis for the Potential Use of Coconut Oil as Phase Change Material in Buildings," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    13. Xi Meng & Li Meng & Jiahui Wang, 2022. "Energy-saving contribution of the thermochromic coating in exterior walls in hot-summer and cold-winter zone [Demand response scheduling algorithm of the economic energy consumption in buildings fo," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 710-719.
    14. Fabiani, Claudia & Chiatti, Chiara & Pisello, Anna Laura, 2021. "Development of photoluminescent composites for energy efficiency in smart outdoor lighting applications: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 172(C), pages 1-15.
    15. Butt, Afaq A. & de Vries, Samuel B. & Loonen, Roel C.G.M. & Hensen, Jan L.M. & Stuiver, Anthonie & van den Ham, Jonathan E.J. & Erich, Bart S.J.F., 2021. "Investigating the energy saving potential of thermochromic coatings on building envelopes," Applied Energy, Elsevier, vol. 291(C).
    16. Chiatti, Chiara & Fabiani, Claudia & Cotana, Franco & Pisello, Anna Laura, 2021. "Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials’ optimization," Energy, Elsevier, vol. 231(C).
    17. Zhang, Guangpeng & Wu, Huijun & Liu, Jia & Liu, Yanchen & Ding, Yujie & Huang, Huakun, 2024. "A review on switchable building envelopes for low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    18. Angeliki Kitsopoulou & Evangelos Bellos & Christos Tzivanidis, 2024. "An Up-to-Date Review of Passive Building Envelope Technologies for Sustainable Design," Energies, MDPI, vol. 17(16), pages 1-55, August.
    19. Gabriele Battista & Luca Evangelisti & Claudia Guattari & Emanuele De Lieto Vollaro & Roberto De Lieto Vollaro & Francesco Asdrubali, 2020. "Urban Heat Island Mitigation Strategies: Experimental and Numerical Analysis of a University Campus in Rome (Italy)," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
    20. Cavadini, Giovan Battista & Cook, Lauren M., 2021. "Green and cool roof choices integrated into rooftop solar energy modelling," Applied Energy, Elsevier, vol. 296(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6303-:d:1698176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.