IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5707-d1683905.html
   My bibliography  Save this article

Challenges of Sustainable Water Management in a Heavily Industrialized Urban Basin, Case of Bytomka River, Poland

Author

Listed:
  • Ewa Katarzyn Janson

    (Central Mining Institute—National Research Institute, 40-166 Katowice, Poland)

  • Adam Hamerla

    (Central Mining Institute—National Research Institute, 40-166 Katowice, Poland)

Abstract

Industrial and urban activity has inevitably changed the water environment and caused significant impacts on water resources’ quality and quantity. The identification of related impacts is particularly important in the context of increasing water shortages due to climate change. Overlapping industrial impacts and drought occurrence have resulted in the long-lasting deterioration of surface water status. Therefore, the mitigation of negative impacts is crucial for relevant and sustainable water management in river basins. One of the most impactful branches of industry is underground coal mining, which requires dewatering deposits and excavations. Mine waters discharged into rivers have induced significant increases of salinity, while urban wastewaters have increased biogenic contamination in surface waters. Sustainable development goals require water protection, energy transition, and circularity; therefore, coal will be repurposed in favor of alternative sources of energy. The phasing out of coal and cessation of dewatering of mines would rapidly reduce mine waters’ impact on the environment. However, in heavily industrialized urban basins, the share of natural waters in river flows is exceptionally low—due to significant and long-lasting transformations, industrial and urban wastewaters are the main constitutive components in certain river hydrological regimes. The case study of Bytomka in the Upper Silesian Coal Basin, Southern Poland is a vivid example of a river basin significantly impacted by urban and industrial activity over a long-term period. The Bytomka River’s water status and the development of its watershed area is an example of complex and overlapping impacts, wherein sustainable water management requires proper recognition of prevailing factors such as mine water discharges, climate change and drought periods, wastewater impacts, and urbanization of the water basin area. The presented study reveals key findings showing that future coal mine closures would result in significant water resource shortages due to a reduction of mine water discharges, significant biogenic (N and P) pollution increases, and hazards of harmful algal blooms. Therefore, there is an urgent need to increase the retention potential of the watershed, use nature-based solutions, and mitigate negative impacts of the coal mining transition. The increase in treatment capability of industrial wastewater and sewage discharge would help to cope with the natural water vulnerability induced by the impacts of climate change.

Suggested Citation

  • Ewa Katarzyn Janson & Adam Hamerla, 2025. "Challenges of Sustainable Water Management in a Heavily Industrialized Urban Basin, Case of Bytomka River, Poland," Sustainability, MDPI, vol. 17(13), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5707-:d:1683905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5707/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5707/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey O’Hara & Konstantine Georgakakos, 2008. "Quantifying the Urban Water Supply Impacts of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1477-1497, October.
    2. Luis Garrote, 2017. "Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2951-2963, August.
    3. Barrow, Christopher J., 1998. "River basin development planning and management: A critical review," World Development, Elsevier, vol. 26(1), pages 171-186, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Araceli Martin-Candilejo & Francisco J. Martin-Carrasco & Ana Iglesias & Luis Garrote, 2023. "Heading into the Unknown? Exploring Sustainable Drought Management in the Mediterranean Region," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    2. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    3. Brannstrom, Christian, 2001. "Conservation-with-Development Models in Brazil's Agro-Pastoral Landscapes," World Development, Elsevier, vol. 29(8), pages 1345-1359, August.
    4. John Parr, 2015. "The city and the region as contrasts in spatial organization," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(3), pages 797-817, May.
    5. Shoukat Ali Shah & Madeeha Kiran & Rabia Dars & Aleena Nazir & Shaharyar Hassan Ashrafani, 2021. "Development Of Stage-Discharge Rating Curve And Rating Table Of Piyaro Minor And Dilwaro Minor," Geological Behavior (GBR), Zibeline International Publishing, vol. 5(1), pages 23-27, november.
    6. Molden, David & Sakthivadivel, Ramasamy & Samad, Madar & Burton, Martin, 2005. "Phases of river basin development: the need for adaptive institutions," Book Chapters,, International Water Management Institute.
    7. George Tsakiris, 2017. "Facets of Modern Water Resources Management: Prolegomena," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2899-2904, August.
    8. Mosisa Teferi Timotewos & Matthias Barjenbruch, 2024. "Examining the Prospects of Residential Water Demand Management Policy Regulations in Ethiopia: Implications for Sustainable Water Resource Management," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    9. Stephanie MacLeod & Yves Filion, 2012. "Issues and Implications of Carbon-Abatement Discounting and Pricing for Drinking Water System Design in Canada," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 43-61, January.
    10. Pradeep Amarasinghe & An Liu & Prasanna Egodawatta & Paul Barnes & James McGree & Ashantha Goonetilleke, 2017. "Modelling Resilience of a Water Supply System under Climate Change and Population Growth Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2885-2898, July.
    11. Beatriz Larraz & Enrique San-Martin, 2021. "A Tale of Two Dams: The Impact of Reservoir Management on Rural Depopulation in Central Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4769-4787, November.
    12. G. Comair & D. McKinney & D. Siegel, 2012. "Hydrology of the Jordan River Basin: Watershed Delineation, Precipitation and Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4281-4293, November.
    13. Mody, Jyothsna, 2004. "Achieving accountability through decentralization : lessons for integrated river basin management," Policy Research Working Paper Series 3346, The World Bank.
    14. Park, Jangho & Bayraksan, Güzin, 2023. "A multistage distributionally robust optimization approach to water allocation under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 306(2), pages 849-871.
    15. Naser Amir Ebrahimi & Ali Nobakht & Hakan İnci & Valiollah Palangi & Marian Suplata & Maximilian Lackner, 2024. "Drinking Water Quality Management for Broiler Performance and Carcass Characteristics," World, MDPI, vol. 5(4), pages 1-10, October.
    16. Hypatia Nassopoulos & Patrice Dumas & Stéphane Hallegatte, 2012. "Adaptation to an uncertain climate change: cost benefit analysis and robust decision making for dam dimensioning," Climatic Change, Springer, vol. 114(3), pages 497-508, October.
    17. Svendsen, Mark & Wester, Philippus & Molle, Francois, 2005. "Managing river basins: an institutional perspective," Book Chapters,, International Water Management Institute.
    18. Kajetan Sadowski, 2021. "Implementation of the New European Bauhaus Principles as a Context for Teaching Sustainable Architecture," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    19. Olanike Aladenola & Omotayo Adeboye, 2010. "Assessing the Potential for Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2129-2137, August.
    20. Rishma Chengot & Jerry W. Knox & Ian P. Holman, 2021. "Evaluating the Feasibility of Water Sharing as a Drought Risk Management Tool for Irrigated Agriculture," Sustainability, MDPI, vol. 13(3), pages 1-16, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5707-:d:1683905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.