IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5588-d1681339.html
   My bibliography  Save this article

An Exergy-Based “Degree of Sustainability”: Definition, Derivation, and Examples of Application

Author

Listed:
  • Enrico Sciubba

    (Department of Mechanical Engineering, Ovidius University of Constanta, 900527 Constanta, Romania)

Abstract

The work presented in this paper is a contribution to the practical implementation of the “sustainability” concept, which is tightly connected with “resource thriftiness”, i.e., with reduction in the anthropic extraction of the irreplaceable supplies of fossil materials—ores and fuels—contained in the Earth’s crust. The saving is tied with “environmental conservation”, which is another concept embedded in the definition of sustainability. This paper starts from the assumption that the best measure of “resource consumption” is the total equivalent primary exergy extracted from the biosphere. The question is, then, while it is evidently correct to include social, ethical, and monetary matters into the definition of “sustainability”, what about the required resource consumption? To answer this question, the dynamic balances of a society represented as a thermodynamic system were examined to show that a “sustainable state” can be reached under two necessary conditions: first, the supply must consist only of renewable resources; and, second, the rate of such a supply must be higher than a certain threshold that can be attributed a physical significance. The procedure outlined in this paper leads to a rigorous definition of a society’s “thermodynamical degree of sustainability”, which is based solely on the primary renewable and non-renewable exergy inputs, as well as on the final exergy consumption. Some examples of applications to industrialized and non-industrialized countries are also presented and discussed.

Suggested Citation

  • Enrico Sciubba, 2025. "An Exergy-Based “Degree of Sustainability”: Definition, Derivation, and Examples of Application," Sustainability, MDPI, vol. 17(12), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5588-:d:1681339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alfonso Biondi & Enrico Sciubba, 2021. "Extended Exergy Analysis (EEA) of Italy, 2013–2017," Energies, MDPI, vol. 14(10), pages 1-21, May.
    2. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    3. Maximilian Kardung & Kutay Cingiz & Ortwin Costenoble & Roel Delahaye & Wim Heijman & Marko Lovrić & Myrna van Leeuwen & Robert M’Barek & Hans van Meijl & Stephan Piotrowski & Tévécia Ronzon & Johanne, 2021. "Development of the Circular Bioeconomy: Drivers and Indicators," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    4. Corvellec, Hervé & Paulsson, Alexander, 2023. "Resource shifting: Resourcification and de-resourcification for degrowth," Ecological Economics, Elsevier, vol. 205(C).
    5. Sciubba, Enrico, 2024. "A possible reconciliation between exergy analysis, thermo-economics and the resource cost of externalities," Energy, Elsevier, vol. 310(C).
    6. Christopher J. Koroneos & Evanthia A. Nanaki & George A. Xydis, 2012. "Sustainability Indicators for the Use of Resources—The Exergy Approach," Sustainability, MDPI, vol. 4(8), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.
    2. Nakhaii, Fatemeh & Ghanbari, Seyed Ahmad & Asgharipour, Mohammad Reza & Seyedabadi, Esmaeel & Sciubba, Enrico, 2024. "Evaluating ecological sustainability of mechanized and traditional systems of damaskrose production using extended exergy analysis," Ecological Modelling, Elsevier, vol. 488(C).
    3. Biondi, Alfonso, 2022. "A contribution to the search for a thermodynamics-based sustainability indicator: Extended Exergy Analysis of the Italian system (1990–2012) and comparison with other indicators," Energy, Elsevier, vol. 244(PB).
    4. Sobhy Khedr & Melchiorre Casisi & Mauro Reini, 2022. "The Thermoeconomic Environment Cost Indicator (i ex-TEE ) as a One-Dimensional Measure of Resource Sustainability," Energies, MDPI, vol. 15(6), pages 1-14, March.
    5. Vincent Smith & Justus H. H. Wesseler & David Zilberman, 2021. "New Plant Breeding Technologies: An Assessment of the Political Economy of the Regulatory Environment and Implications for Sustainability," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    6. Alfonso Biondi & Enrico Sciubba, 2021. "Extended Exergy Analysis (EEA) of Italy, 2013–2017," Energies, MDPI, vol. 14(10), pages 1-21, May.
    7. Daniela Firoiu & George H. Ionescu & Teodor Marian Cojocaru & Mariana Niculescu & Maria Nache Cimpoeru & Oana Alexandra Călin, 2023. "Progress of EU Member States Regarding the Bioeconomy and Biomass Producing and Converting Sectors," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    8. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    9. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    10. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    11. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    12. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    13. Mauricio Alviar & Andrés García-Suaza & Laura Ramírez-Gómez & Simón Villegas-Velásquez, 2021. "Measuring the Contribution of the Bioeconomy: The Case of Colombia and Antioquia," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    14. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    15. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    16. Andrés Fernández-Miguel & Davide Settembre-Blundo & Marco Vacchi & Fernando E. García-Muiña, 2025. "Thermoeconomics Meets Business Science: Systemic Exergy Management (SYMΞX) as a New Theoretical and Flexible Framework for Sustainability," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 26(1), pages 111-139, March.
    17. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    18. Samir Sayadi Gmada & Mar Cátedra & Carmen Capote & Carlos Parra-López & María García & Carmen Ronchel & Rafael Dueñas-Sánchez & Esther Ortiz & Milagros Argüelles & José Luis Cruz, 2025. "Driving Sustainability: Circular Bioeconomy and Governance in Andalusia (Southern Spain)," Sustainability, MDPI, vol. 17(7), pages 1-22, April.
    19. Fabiana Gatto & Sara Daniotti & Ilaria Re, 2021. "Driving Green Investments by Measuring Innovation Impacts. Multi-Criteria Decision Analysis for Regional Bioeconomy Growth," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    20. Xun Wei & Jie Luo & Aqing Pu & Qianqian Liu & Lei Zhang & Suowei Wu & Yan Long & Yan Leng & Zhenying Dong & Xiangyuan Wan, 2022. "From Biotechnology to Bioeconomy: A Review of Development Dynamics and Pathways," Sustainability, MDPI, vol. 14(16), pages 1-17, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5588-:d:1681339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.