IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5428-d1677617.html
   My bibliography  Save this article

Innovative Wastewater Treatment Using 3D-Printed Clay Bricks Enhanced with Oyster Shell Powder: A Life Cycle Assessment

Author

Listed:
  • Wathsala Benthota Pathiranage

    (Department of Civil Engineering, University of Mississippi, Carrier Hall, University, MS 38677, USA
    Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, USA)

  • Hunain Alkhateb

    (Department of Civil Engineering, University of Mississippi, Carrier Hall, University, MS 38677, USA
    Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, USA)

  • Matteo D’Alessio

    (Department of Civil Engineering, University of Mississippi, Carrier Hall, University, MS 38677, USA
    Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, USA)

Abstract

With growing global concerns over sustainable wastewater treatment, there is a pressing need for low-cost, eco-friendly filtration solutions. This study conducted a life cycle assessment (LCA) to evaluate the potential of improving slow sand filtration efficiency by integrating alternative materials like clay and oyster shell powder (OSP), while minimizing the environmental footprint. Additionally, the adaptability of three-dimensional (3D) printing was explored to incorporate these materials into innovative filter designs, assessing scalability for broader wastewater applications. Ten filter configurations, including a slow sand filter (SSF) enhanced with OSP (90:10) and 3D-printed clay–OSP bricks (ratios of 90:10, 85:15, 80:20), were assessed across three sourcing distances: local (in situ), regional (161 km), and distant (1609 km). The results showed that SSFs with OSP consistently delivered lower environmental impacts, reducing freshwater ecotoxicity, eutrophication, and human toxicity by up to 4% compared to conventional SSFs, particularly when transport was minimized. Among brick-based systems, single-brick columns offered the best balance of performance and impact, while three-brick columns had the highest environmental burden, largely due to the increased electricity use. Economic analysis reinforced the environmental findings: SSFs with OSP were the most cost-effective option, followed closely by SSFs, while brick-based systems were slightly more expensive, with costs rising sharply when sourcing distances exceeded 161 km. Overall, integrating OSP into SSFs offers an optimal balance of sustainability and affordability, while single-brick columns (90:10) present a promising alternative. Future research should further optimize material blends and design configurations to align with long-term environmental and economic goals.

Suggested Citation

  • Wathsala Benthota Pathiranage & Hunain Alkhateb & Matteo D’Alessio, 2025. "Innovative Wastewater Treatment Using 3D-Printed Clay Bricks Enhanced with Oyster Shell Powder: A Life Cycle Assessment," Sustainability, MDPI, vol. 17(12), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5428-:d:1677617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longo, Stefano & d’Antoni, Benedetto Mirko & Bongards, Michael & Chaparro, Antonio & Cronrath, Andreas & Fatone, Francesco & Lema, Juan M. & Mauricio-Iglesias, Miguel & Soares, Ana & Hospido, Almudena, 2016. "Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement," Applied Energy, Elsevier, vol. 179(C), pages 1251-1268.
    2. Samuel Anang & Mahmoud Nasr & Manabu Fujii & Mona G. Ibrahim, 2024. "Synergism of Life Cycle Assessment and Sustainable Development Goals Techniques to Evaluate Downflow Hanging Sponge System Treating Low-Carbon Wastewater," Sustainability, MDPI, vol. 16(5), pages 1-22, February.
    3. ElSayed ElBastamy & Lubna A. Ibrahim & Atef Ghandour & Martina Zelenakova & Zuzana Vranayova & Mohamed Abu-Hashim, 2021. "Efficiency of Natural Clay Mineral Adsorbent Filtration Systems in Wastewater Treatment for Potential Irrigation Purposes," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    4. Dania M. Allami & Mohamed T. Sorour & Medhat Moustafa & Ahmed Elreedy & Mai Fayed, 2023. "Life Cycle Assessment of a Domestic Wastewater Treatment Plant Simulated with Alternative Operational Designs," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea G. Capodaglio & Gustaf Olsson, 2019. "Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    2. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    3. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    4. Capelo, Bernardo & Pérez-Sánchez, Modesto & Fernandes, João F.P. & Ramos, Helena M. & López-Jiménez, P. Amparo & Branco, P.J. Costa, 2017. "Electrical behaviour of the pump working as turbine in off grid operation," Applied Energy, Elsevier, vol. 208(C), pages 302-311.
    5. Nawaz, Rab & Hanafiah, Marlia Mohd & Sakawi, Zaini & Baki, Zaher Abdel & Abidin, Sumaiya Bt Zainal & Anjum, Muzammil & Fazli Ismail, Aznan & Arshad, Ushtar, 2025. "A review of the defective TiO2 materials-based photocatalysis for environmental remediation: exploring the nexus between light wavelength and energy consumption," Applied Energy, Elsevier, vol. 393(C).
    6. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    7. Mehdi Sharif Shourjeh & Przemysław Kowal & Jakub Drewnowski & Bartosz Szeląg & Aleksandra Szaja & Grzegorz Łagód, 2020. "Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization," Energies, MDPI, vol. 13(21), pages 1-21, November.
    8. Nikolaos Tsalas & Spyridon K. Golfinopoulos & Stylianos Samios & Georgios Katsouras & Konstantinos Peroulis, 2024. "Optimization of Energy Consumption in a Wastewater Treatment Plant: An Overview," Energies, MDPI, vol. 17(12), pages 1-43, June.
    9. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    10. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    11. Sanjuana Rodríguez Gomez & Nahum Andres Medellín Castillo & Israel Herrera Orozco & Alfredo Ávila Galarza & Sergio Arturo Castro Larragoitia & Miguel Mauricio Aguilera Flores & Verónica Ávila Vázquez, 2025. "Life Cycle Assessment of a wastewater treatment plant in an urban area using the environmental footprint method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(4), pages 9145-9163, April.
    12. Lam, Chor-Man & Leng, Ling & Chen, Pi-Cheng & Lee, Po-Heng & Hsu, Shu-Chien, 2017. "Eco-efficiency analysis of non-potable water systems in domestic buildings," Applied Energy, Elsevier, vol. 202(C), pages 293-307.
    13. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
    14. Krzysztof Gaska & Agnieszka Generowicz, 2020. "SMART Computational Solutions for the Optimization of Selected Technology Processes as an Innovation and Progress in Improving Energy Efficiency of Smart Cities—A Case Study," Energies, MDPI, vol. 13(13), pages 1-41, June.
    15. Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
    16. Michela Gallo & Desara Malluta & Adriana Del Borghi & Erica Gagliano, 2024. "A Critical Review on Methodologies for the Energy Benchmarking of Wastewater Treatment Plants," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    17. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    18. Magdalena Budych-Gorzna & Beata Szatkowska & Lukasz Jaroszynski & Bjarne Paulsrud & Ewelina Jankowska & Tymoteusz Jaroszynski & Piotr Oleskowicz-Popiel, 2021. "Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment," Energies, MDPI, vol. 14(5), pages 1-17, March.
    19. Favi, Claudio & Marconi, Marco & Mandolini, Marco & Germani, Michele, 2022. "Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework," Applied Energy, Elsevier, vol. 312(C).
    20. Mateusz Ciski & Krzysztof Rząsa, 2025. "The Environmental Dimension of Sustainable Development in Relation to the Transition from Brown to Green Energy—A Case Study of Poland from 2005 to 2023," Energies, MDPI, vol. 18(11), pages 1-28, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5428-:d:1677617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.