IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925008736.html
   My bibliography  Save this article

A review of the defective TiO2 materials-based photocatalysis for environmental remediation: exploring the nexus between light wavelength and energy consumption

Author

Listed:
  • Nawaz, Rab
  • Hanafiah, Marlia Mohd
  • Sakawi, Zaini
  • Baki, Zaher Abdel
  • Abidin, Sumaiya Bt Zainal
  • Anjum, Muzammil
  • Fazli Ismail, Aznan
  • Arshad, Ushtar

Abstract

Given the growing need to minimise emissions in order to combat climate change and the apparent association between electrical energy (EE) consumption and emissions, an inclusive analysis of the link between the wavelength of light and the EE consumption by defective titanium dioxide (D-TiO2) nanomaterials (NMs) could be extremely useful. An explicit understanding of the nexus between the energy consumption by D-TiO2 NMs―primarily EE―and the wavelength of light driving the oxidative degradation of organic compounds remain elusive. This review paper presents the analysis of the EE consumed by the D-TiO2 NMs at different wavelengths and the corresponding treatment cost (T-cost) for the oxidative degradation of four different organic compounds: pesticides (PES), organic dyes (ODs), phenolic compounds (PCs), and pharmaceuticals (PMs). The quantity of EE consumed was estimated using a reliable scale-up metric proposed by IUPAC. According to the analysis, the EE consumption increases by ∼100 %, or 2.75 kWh/m3 for every nm, when the wavelength is extending from the UV (λ < 400) to the visible range (λ > 400 nm). Even while some D-TiO2 NMs improved energy efficiency and decreased EE consumption to less than 5 kWh/m3, the values are still higher than those of a traditional treatment facility. To lower EE consumption and increase the energy efficiency of D-TiO2 NMs for environmental remediation, techniques like matching the spectrum of light with that of the pollutant and D-TiO2 NMs, light on and off modulation, and the development of hierarchical structures can be implemented.

Suggested Citation

  • Nawaz, Rab & Hanafiah, Marlia Mohd & Sakawi, Zaini & Baki, Zaher Abdel & Abidin, Sumaiya Bt Zainal & Anjum, Muzammil & Fazli Ismail, Aznan & Arshad, Ushtar, 2025. "A review of the defective TiO2 materials-based photocatalysis for environmental remediation: exploring the nexus between light wavelength and energy consumption," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008736
    DOI: 10.1016/j.apenergy.2025.126143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925008736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Longo, Stefano & d’Antoni, Benedetto Mirko & Bongards, Michael & Chaparro, Antonio & Cronrath, Andreas & Fatone, Francesco & Lema, Juan M. & Mauricio-Iglesias, Miguel & Soares, Ana & Hospido, Almudena, 2016. "Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement," Applied Energy, Elsevier, vol. 179(C), pages 1251-1268.
    2. María del Pilar Rodríguez-Rojas & Victoria Bustos-Terrones & María Yesenia Díaz-Cárdenas & Edna Vázquez-Vélez & Horacio Martínez, 2024. "Life Cycle Assessment of Green Synthesis of TiO 2 Nanoparticles vs. Chemical Synthesis," Sustainability, MDPI, vol. 16(17), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea G. Capodaglio & Gustaf Olsson, 2019. "Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    2. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    3. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    4. Capelo, Bernardo & Pérez-Sánchez, Modesto & Fernandes, João F.P. & Ramos, Helena M. & López-Jiménez, P. Amparo & Branco, P.J. Costa, 2017. "Electrical behaviour of the pump working as turbine in off grid operation," Applied Energy, Elsevier, vol. 208(C), pages 302-311.
    5. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    6. Mehdi Sharif Shourjeh & Przemysław Kowal & Jakub Drewnowski & Bartosz Szeląg & Aleksandra Szaja & Grzegorz Łagód, 2020. "Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization," Energies, MDPI, vol. 13(21), pages 1-21, November.
    7. Nikolaos Tsalas & Spyridon K. Golfinopoulos & Stylianos Samios & Georgios Katsouras & Konstantinos Peroulis, 2024. "Optimization of Energy Consumption in a Wastewater Treatment Plant: An Overview," Energies, MDPI, vol. 17(12), pages 1-43, June.
    8. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    9. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    10. Lam, Chor-Man & Leng, Ling & Chen, Pi-Cheng & Lee, Po-Heng & Hsu, Shu-Chien, 2017. "Eco-efficiency analysis of non-potable water systems in domestic buildings," Applied Energy, Elsevier, vol. 202(C), pages 293-307.
    11. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
    12. Krzysztof Gaska & Agnieszka Generowicz, 2020. "SMART Computational Solutions for the Optimization of Selected Technology Processes as an Innovation and Progress in Improving Energy Efficiency of Smart Cities—A Case Study," Energies, MDPI, vol. 13(13), pages 1-41, June.
    13. Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
    14. Michela Gallo & Desara Malluta & Adriana Del Borghi & Erica Gagliano, 2024. "A Critical Review on Methodologies for the Energy Benchmarking of Wastewater Treatment Plants," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    15. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    16. Magdalena Budych-Gorzna & Beata Szatkowska & Lukasz Jaroszynski & Bjarne Paulsrud & Ewelina Jankowska & Tymoteusz Jaroszynski & Piotr Oleskowicz-Popiel, 2021. "Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment," Energies, MDPI, vol. 14(5), pages 1-17, March.
    17. Favi, Claudio & Marconi, Marco & Mandolini, Marco & Germani, Michele, 2022. "Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework," Applied Energy, Elsevier, vol. 312(C).
    18. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    19. Wathsala Benthota Pathiranage & Hunain Alkhateb & Matteo D’Alessio, 2025. "Innovative Wastewater Treatment Using 3D-Printed Clay Bricks Enhanced with Oyster Shell Powder: A Life Cycle Assessment," Sustainability, MDPI, vol. 17(12), pages 1-19, June.
    20. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.