IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5399-d1676811.html
   My bibliography  Save this article

Techno-Economic Analysis of Onsite Sustainable Hydrogen Production via Ammonia Decomposition with Heat Recovery System

Author

Listed:
  • Jian Tiong Lim

    (School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Singapore)

  • Eddie Yin-Kwee Ng

    (School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Singapore)

  • Hong Xun Ong

    (School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Singapore)

Abstract

Hydrogen offers a promising solution to reduce emissions in the energy sector with the growing need for decarbonisation. Despite its environmental benefits, the use of hydrogen presents significant challenges in storage and transport. Many studies have focused on the different types of hydrogen production and analysed the pros and cons of each technique for different applications. This study focuses on techno-economic analysis of onsite hydrogen production through ammonia decomposition by utilising the heat from exhaust gas generated by hydrogen-fuelled gas turbines. Aspen Plus simulation software and its economic evaluation system are used. The Siemens Energy SGT-400 gas turbine’s parameters are used as the baseline for the hydrogen gas turbine in this study, together with the economic parameters of the capital expenditure (CAPEX) and operating expenditure (OPEX) are considered. The levelised cost of hydrogen (LCOH) is found to be 5.64 USD/kg of hydrogen, which is 10.6% lower than that of the conventional method, where a furnace is used to increase the temperature of ammonia. A major contribution of the LCOH comes from the ammonia feed cost up to 99%. The price of ammonia is found to be the most sensitive parameter of the contribution to LCOH. The findings of this study show that the use of ammonia decomposition via heat recovery for onsite hydrogen production with ammonic recycling is economically viable and highlight the critical need to further reduce the prices of green ammonia and blue ammonia in the future.

Suggested Citation

  • Jian Tiong Lim & Eddie Yin-Kwee Ng & Hong Xun Ong, 2025. "Techno-Economic Analysis of Onsite Sustainable Hydrogen Production via Ammonia Decomposition with Heat Recovery System," Sustainability, MDPI, vol. 17(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5399-:d:1676811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Devkota, Sijan & Cha, Jin-Young & Shin, Beom-Ju & Mun, Ji-Hun & Yoon, Hyung Chul & Mazari, Shaukat Ali & Moon, Jong-Ho, 2024. "Techno-economic and environmental assessment of hydrogen production through ammonia decomposition," Applied Energy, Elsevier, vol. 358(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    2. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    3. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    4. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    5. Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Srilakshmi Jeyaraman & Dmitri L. Danilov & Peter H. L. Notten & Udaya Bhaskar Reddy Ragula & Vaira Vignesh Ramalingam & Thirugnasambandam G. Manivasagam, 2025. "Influence of Ni and Nb Addition in TiVCr-Based High Entropy Alloys for Room-Temperature Hydrogen Storage," Energies, MDPI, vol. 18(15), pages 1-19, July.
    7. Liufei Shen & Cheng Zhang & Feiyue Shan & Long Chen & Shuai Liu & Zhiqiang Zheng & Litong Zhu & Jinduo Wang & Xingzheng Wu & Yujia Zhai, 2024. "Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power," Energies, MDPI, vol. 18(1), pages 1-17, December.
    8. Lu, Teng & Hu, Ziwei & Du, Qingjun & Hou, Jian, 2025. "Multiscale mechanisms of foam injection for enhanced underground hydrogen storage: Experimental and simulation insights from pore to reservoir scale," Energy, Elsevier, vol. 330(C).
    9. Cao, Qiang & Chen, Yuji & Wang, Zhiping & Wang, Miaomiao & Wang, Pengcheng & Ge, Lichun & Li, Peng & Zhao, Qinyu & Wang, Bo & Gan, Zhihua, 2025. "Improving the cooling efficiency of cryo-compressed hydrogen based on the temperature-distributed method in regenerative refrigerators," Energy, Elsevier, vol. 314(C).
    10. Realpe, Natalia & Lezcano, Gontzal & Kulkarni, Shekhar R. & Sayas, Salvador & Morlanes, Natalia & Rakib, Mohammad & Aldilaijan, Ragad & Solami, Bandar & Gascon, Jorge & Castaño, Pedro, 2024. "The technological prospects of repurposing methane steam reformers into ammonia crackers for decarbonized H2 production," Applied Energy, Elsevier, vol. 376(PB).
    11. Halim, Iskandar & Zain, Nur Sara & Khoo, Hsien H., 2025. "Assessing the feasibility of Ammonia utilization for Power generation: A techno-economic-environmental study," Applied Energy, Elsevier, vol. 386(C).
    12. Stucchi, Leonardo & Bocchiola, Daniele & Simoni, Camilla & Ambrosini, Stefano Romano & Bianchi, Alberto & Rosso, Renzo, 2023. "Future hydropower production under the framework of NextGenerationEU: The case of Santa Giustina reservoir in Italian Alps," Renewable Energy, Elsevier, vol. 215(C).
    13. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    14. Li, Guoliang & Gao, Wei & Jiang, Haipeng & Liu, Junpeng, 2025. "Enhancing combustion performance, hydrogen evolution stability and sintering resistance of AlH3-nanoparticles via Ni coating," Renewable Energy, Elsevier, vol. 248(C).
    15. Hua, Zhengli & Gao, Wei & Chi, Shuanghe & Wang, Xizheng & Zheng, Jinyang, 2025. "Development status and challenges of high-pressure gaseous hydrogen storage vessels and cylinders in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    16. Han Fu & Amin Mojiri & Junli Wang & Zhe Zhao, 2025. "Hydrogen Energy Storage via Carbon-Based Materials: From Traditional Sorbents to Emerging Architecture Engineering and AI-Driven Optimization," Energies, MDPI, vol. 18(15), pages 1-36, July.
    17. Jimiao Zhang & Jie Li, 2024. "Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future," Energies, MDPI, vol. 17(16), pages 1-26, August.
    18. Wen, Du & Aziz, Muhammad, 2024. "Perspective of staged hydrogen economy in Japan: A case study based on the data-driven method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Zilong Zhang & Zhaotong Zhang & Yuqi Zhou & Yujie Ouyang & Jiangtao Sun & Jing Zhang & Bin Li & Dan Zhang & Yongxu Wang & Jian Yao & Huadao Xing & Lifeng Xie, 2025. "Review of the Diffusion Process, Explosion Mechanism, and Detection Technology of Hydrogen and Ammonia," Energies, MDPI, vol. 18(10), pages 1-35, May.
    20. Alberto Abánades, 2022. "Perspectives on Hydrogen," Energies, MDPI, vol. 16(1), pages 1-7, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5399-:d:1676811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.