IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5338-d1675242.html
   My bibliography  Save this article

Improving Sustainable Viticulture in Developing Countries: A Case Study

Author

Listed:
  • Zandra Betzabe Rivera Chavez

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy)

  • Alessia Porcaro

    (MEID4 Academic Spin-Off, University of Salerno, Via Rosa Jemma 2, 84091 Battipaglia, SA, Italy)

  • Marco Claudio De Simone

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy)

  • Domenico Guida

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy)

Abstract

This paper presents the identification of the functional requirements and development of a preliminary concept of the AgriRover, a low-cost, modular autonomous vehicle intended to support sustainable practices in traditional vineyards in developing countries, focusing on the Ica region of Peru. Viticulture in this region faces acute challenges such as soil salinity, climate variability, labour shortages, and low technological readiness. Rather than offering a ready-made technological integration, this study adopts a step-by-step design approach grounded in the realities of smallholder farmers. The authors mapped the phenological stages of grapevines using the BBCH scale and systematically reviewed available sensing and monitoring technologies to determine the most context-appropriate solutions. Virtual modelling and preliminary analysis validate AgriRover’s geometric configuration and path-following capabilities within narrow vineyard rows. The proposed platform is meant to be adaptable, scalable, and maintainable using locally available material and human resources. AgriRover offers a practical and affordable foundation for precision agriculture in resource-constrained settings by aligning viticultural challenges with sensor deployment strategies and sustainability criteria. The sustainability analysis of the initial AgriRover concept was evaluated using the CML methodology, accounting for local waste processing rates and energy mixes to reflect environmental realities in Peru.

Suggested Citation

  • Zandra Betzabe Rivera Chavez & Alessia Porcaro & Marco Claudio De Simone & Domenico Guida, 2025. "Improving Sustainable Viticulture in Developing Countries: A Case Study," Sustainability, MDPI, vol. 17(12), pages 1-31, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5338-:d:1675242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongtao Liu & Chunmei Zhang & Zhuo Hao & Xu Cai & Chuanpan Liu & Jianzhang Zhang & Shu Wang & Yisong Chen, 2023. "Study on the Life Cycle Assessment of Automotive Power Batteries Considering Multi-Cycle Utilization," Energies, MDPI, vol. 16(19), pages 1-24, September.
    2. Hamouda, Fatma & Puig-Sirera, Àngela & Bonzi, Lorenzo & Remorini, Damiano & Massai, Rossano & Rallo, Giovanni, 2024. "Design and validation of a soil moisture-based wireless sensors network for the smart irrigation of a pear orchard," Agricultural Water Management, Elsevier, vol. 305(C).
    3. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    4. Pronti, A. & Zegarra, E. & Vicario, D. Rey & Graves, A., 2024. "Global exports draining local water resources: Land concentration, food exports and water grabbing in the Ica Valley (Peru)," World Development, Elsevier, vol. 177(C).
    5. Marco Ammoniaci & Simon-Paolo Kartsiotis & Rita Perria & Paolo Storchi, 2021. "State of the Art of Monitoring Technologies and Data Processing for Precision Viticulture," Agriculture, MDPI, vol. 11(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eleonora Cataldo & Maddalena Fucile & Giovan Battista Mattii, 2022. "Effects of Kaolin and Shading Net on the Ecophysiology and Berry Composition of Sauvignon Blanc Grapevines," Agriculture, MDPI, vol. 12(4), pages 1-21, March.
    2. Sergio Vélez & Rubén Vacas & Hugo Martín & David Ruano-Rosa & Sara Álvarez, 2022. "High-Resolution UAV RGB Imagery Dataset for Precision Agriculture and 3D Photogrammetric Reconstruction Captured over a Pistachio Orchard ( Pistacia vera L.) in Spain," Data, MDPI, vol. 7(11), pages 1-11, November.
    3. Sandra N. Fredes & Luis Á. Ruiz & Jorge A. Recio, 2021. "Modeling °Brix and pH in Wine Grapes from Satellite Images in Colchagua Valley, Chile," Agriculture, MDPI, vol. 11(8), pages 1-18, July.
    4. Dorijan Radočaj & Ivan Plaščak & Mladen Jurišić, 2023. "Global Navigation Satellite Systems as State-of-the-Art Solutions in Precision Agriculture: A Review of Studies Indexed in the Web of Science," Agriculture, MDPI, vol. 13(7), pages 1-17, July.
    5. Kehoe, Michael & Harding, Adele & Pagdilao, Seinfeld Joshua & Appels, Willemijn M., 2025. "Effect of topographical and soil complexity on potato yields in irrigated fields," Agricultural Water Management, Elsevier, vol. 307(C).
    6. Antonio Comparetti & Jose Rafael Marques da Silva, 2022. "Use of Sentinel-2 Satellite for Spatially Variable Rate Fertiliser Management in a Sicilian Vineyard," Sustainability, MDPI, vol. 14(3), pages 1-18, February.
    7. Marko Simeunović & Kruna Ratković & Nataša Kovač & Tamara Racković & António Fernandes, 2025. "A Knowledge-Driven Framework for a Decision Support Platform in Sustainable Viticulture: Integrating Climate Data and Supporting Stakeholder Collaboration," Sustainability, MDPI, vol. 17(4), pages 1-23, February.
    8. O’Shaughnessy, Susan A. & Kim, Minyoung & Andrade, Manuel A. & Colaizzi, Paul D. & Evett, Steven R., 2020. "Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains," Agricultural Water Management, Elsevier, vol. 240(C).
    9. Veronica Sanda Chedea & Ana-Maria Drăgulinescu & Liliana Lucia Tomoiagă & Cristina Bălăceanu & Maria Lucia Iliescu, 2021. "Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard," Sustainability, MDPI, vol. 13(15), pages 1-28, July.
    10. Potopová, Vera & Trnka, Miroslav & Hamouz, Pavel & Soukup, Josef & Castraveț, Tudor, 2020. "Statistical modelling of drought-related yield losses using soil moisture-vegetation remote sensing and multiscalar indices in the south-eastern Europe," Agricultural Water Management, Elsevier, vol. 236(C).
    11. McCarthy, Alison & Foley, Joseph & Raedts, Pieter & Hills, James, 2023. "Field evaluation of automated site-specific irrigation for cotton and perennial ryegrass using soil-water sensors and Model Predictive Control," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Vos, Jeroen, 2025. "The political ecology of our water footprints: Rethinking the colours of virtual water," World Development, Elsevier, vol. 185(C).
    13. Potopová, V. & Trnka, M. & Vizina, A. & Semerádová, D. & Balek, J. & Chawdhery, M.R.A. & Musiolková, M. & Pavlík, P. & Možný, M. & Štěpánek, P. & Clothier, B., 2022. "Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5338-:d:1675242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.