IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p5052-d1668929.html
   My bibliography  Save this article

Coupling Coordination of Carbon Cutting, Pollution Reduction, and Economic Growth in China: Spatiotemporal Evolution, Regional Differences, and Influence Factors

Author

Listed:
  • Yunyan Li

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Hua Cui

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

Abstract

Under China’s “dual-carbon” goal, it is necessary to coordinate the relationship between economic growth and emission reduction. Based on the panel data of 30 provinces in China from 2011 to 2021, this paper explores the coordination level among carbon cutting (CC), pollution reduction (PR), and economic growth (EG) by using the coupling coordination degree (CCD) model, a cold and hot spot analysis, and the Dagum Gini coefficient. Furthermore, we analyze the influencing factors of CCD from a spatial perspective using the geographically weighted regression (GWR) model. The results show that the coordination level of CC, PR, and EG in China has continued to improve and entered a moderately coordinated stage. Meanwhile, regional differences are also evident. The eastern region is a high-CCD concentration area, while the northwest and northeast regions are low-CCD concentration areas. However, inter-regional differences in CCD are decreasing. Urbanization, foreign direct investment, and new quality productive forces contribute significantly to achieving synergies among CC, PR, and EG. However, the effect of industry digitization on CCD fails the significance test in most provinces. The effects of the factors on CCD exhibit obvious spatial heterogeneity characteristics. These findings can provide an important basis for the formulation of regionally differentiated green and low-carbon development policies.

Suggested Citation

  • Yunyan Li & Hua Cui, 2025. "Coupling Coordination of Carbon Cutting, Pollution Reduction, and Economic Growth in China: Spatiotemporal Evolution, Regional Differences, and Influence Factors," Sustainability, MDPI, vol. 17(11), pages 1-29, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5052-:d:1668929
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/5052/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/5052/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Yang & Li, Feng, 2017. "Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China's provincial regions," Energy, Elsevier, vol. 125(C), pages 533-542.
    2. Nan, Shijing & Huo, Yuchen & Lee, Chien-Chiang, 2023. "Assessing the role of globalization on renewable energy consumption: New evidence from a spatial econometric analysis," Renewable Energy, Elsevier, vol. 215(C).
    3. Wang, Jiankang & Han, Qian & Wu, Kexin & Xu, Zetao & Liu, Peng, 2022. "Spatial-temporal patterns and evolution characteristics of the coordinated development of industrial economy, natural resources and environment in China," Resources Policy, Elsevier, vol. 75(C).
    4. Kedong Yin & Runchuan Zhang & Xue Jin & Li Yu, 2022. "Research and Optimization of the Coupling and Coordination of Environmental Regulation, Technological Innovation, and Green Development," Sustainability, MDPI, vol. 14(1), pages 1-18, January.
    5. Menghua Deng & Junfei Chen & Feifei Tao & Jiulong Zhu & Min Wang, 2022. "On the Coupling and Coordination Development between Environment and Economy: A Case Study in the Yangtze River Delta of China," IJERPH, MDPI, vol. 19(1), pages 1-20, January.
    6. Di Peng & Haibin Liu, 2022. "Measurement and Driving Factors of Carbon Emissions from Coal Consumption in China Based on the Kaya-LMDI Model," Energies, MDPI, vol. 16(1), pages 1-19, December.
    7. Shuai Ye & Yuejing Ge & Shiyu Xu & Xiaofan Ma, 2022. "Measurement and Prediction of Coupling Coordination Level of Economic Development, Social Stability and Ecological Environment in Qinghai—Thoughts on Sustainable Societal Safety," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    8. Song Xu & Jiating Wang & Zhisheng Peng, 2024. "Study on the Promotional Effect and Mechanism of New Quality Productive Forces on Green Development," Sustainability, MDPI, vol. 16(20), pages 1-25, October.
    9. Chang, Hsuan-Yu & Wang, Wei & Yu, Jihai, 2021. "Revisiting the environmental Kuznets curve in China: A spatial dynamic panel data approach," Energy Economics, Elsevier, vol. 104(C).
    10. Zhang, Yuxi & Cheung, Adrian (Wai Kong) & Qu, Xiaodong, 2024. "Can digital financial inclusion promote the coupling coordination between pollution reduction and low-carbon development? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1113-1130.
    11. Dong, Qianyu & Zhong, Kaiyi & Liao, Yijia & Xiong, Runli & Wang, Fengbo & Pang, Min, 2023. "Coupling coordination degree of environment, energy, and economic growth in resource-based provinces of China," Resources Policy, Elsevier, vol. 81(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao Kou & Linjuan Xu & Yongtao Cao & Zhanqiao Wang & Qiang Wan & Xiangyu Gao, 2024. "Coupling-Coordination Analysis of Water Resources–Social Economy–Ecological Environment in the Yellow River Golden Triangle Area," Sustainability, MDPI, vol. 16(23), pages 1-16, December.
    2. Yanan Sun & Qingsong Pang, 2025. "Analysis of the Coupling Coordination and Spatial Difference Between Economic and Ecological Environment: A Case Study of China," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
    3. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    4. Taguchi, Hiroyuki, 2024. "Air pollutions and its control governance in Chinese provinces in post-COVID-19 era: panel estimations of provincial environmental Kuznets curves," MPRA Paper 121488, University Library of Munich, Germany.
    5. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    6. Stéphane Mbiankeu Nguea & Hervé Kaffo Fotio, 2025. "The heterogeneous effects of renewable energy, urbanization and democracy on CO2 emissions: Does economic growth matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(4), pages 8835-8861, April.
    7. Sun, Xiaohang & Duan, Haiyan & Song, Junnian & Zheng, Heran & Yang, Wei & Mi, Zhifu, 2024. "Carbon peaking trajectory links to development of a coupled urbanization-industrialization-energy system," Energy, Elsevier, vol. 309(C).
    8. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    9. Zhenhua Xu & Fuyi Ci, 2023. "Spatial-Temporal Characteristics and Driving Factors of Coupling Coordination between the Digital Economy and Low-Carbon Development in the Yellow River Basin," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    10. Mounir Dahmani & Mohamed Mabrouki & Ludovic Ragni, 2021. "Decoupling Analysis of Greenhouse Gas Emissions from Economic Growth: A Case Study of Tunisia," Energies, MDPI, vol. 14(22), pages 1-15, November.
    11. Xueru Pang & Yuquan Zhou & Yiting Zhu & Chunshan Zhou, 2023. "Exploring the Coordination and Spatial–Temporal Characteristics of the Tourism–Economy–Environment Development in the Pearl River Delta Urban Agglomeration, China," IJERPH, MDPI, vol. 20(3), pages 1-24, January.
    12. Zhang, HongWei & Ben, Fang & Qin, Meng, 2024. "Mineral resources, tourism, human capital, and carbon neutrality: A path towards balanced and sustainable development," Resources Policy, Elsevier, vol. 90(C).
    13. Hui Li & Yanan Zheng & Guan Gong & Hongtao Guo, 2023. "A Simulation Study on Peak Carbon Emission of Public Buildings—In the Case of Henan Province, China," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    14. Zhen Yang & Weijun Gao, 2022. "Evaluating the Coordinated Development between Urban Greening and Economic Growth in Chinese Cities during 2005 to 2019," IJERPH, MDPI, vol. 19(15), pages 1-25, August.
    15. Jinhua Shao & Brayan Tillaguango & Rafael Alvarado & Santiago Ochoa-Moreno & Johanna Alvarado-Espejo, 2021. "Environmental Impact of the Shadow Economy, Globalisation, Trade and Market Size: Evidence Using Linear and Non-Linear Methods," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    16. Xu, Guangyue & Dong, Haoyun & Xu, Zhenci & Bhattarai, Nishan, 2022. "China can reach carbon neutrality before 2050 by improving economic development quality," Energy, Elsevier, vol. 243(C).
    17. Yahya, Farzan & Lee, Chien-Chiang, 2023. "Disentangling the asymmetric effect of financialization on the green output gap," Energy Economics, Elsevier, vol. 125(C).
    18. Chao-Qun Ma & Jiang-Long Liu & Yi-Shuai Ren & Yong Jiang, 2019. "The Impact of Economic Growth, FDI and Energy Intensity on China’s Manufacturing Industry’s CO 2 Emissions: An Empirical Study Based on the Fixed-Effect Panel Quantile Regression Model," Energies, MDPI, vol. 12(24), pages 1-16, December.
    19. Danxue Fan & Meiyue Li, 2025. "Coupling and Coordinated Development Analysis of Digital Economy, Economic Resilience, and Ecological Protection," Sustainability, MDPI, vol. 17(9), pages 1-25, May.
    20. Teng, Yuqiang & Lin, Boqiang, 2024. "The energy-saving effect of industrial chain synergistic division: Evidence from China's industrial chain," Energy Policy, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5052-:d:1668929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.