IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p5032-d1668653.html
   My bibliography  Save this article

Predictive Models and GIS for Road Safety: Application to a Segment of the Chone–Flavio Alfaro Road

Author

Listed:
  • Luis Alfonso Moreno-Ponce

    (Department of Transport Infrastructure and Engineering, School of Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Valencia, Spain)

  • Ana María Pérez-Zuriaga

    (Department of Transport Infrastructure and Engineering, School of Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Valencia, Spain)

  • Alfredo García

    (Department of Transport Infrastructure and Engineering, School of Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Valencia, Spain)

Abstract

The analysis of traffic crashes facilitates the identification of trends that can inform strategies to enhance road safety. This study aimed to detect high-risk zones and forecast collision patterns by integrating spatial analysis and predictive modeling. Traffic incidents along the Chone–Flavio Alfaro road segment in Manabí, Ecuador, were examined using Geographic Information Systems (GIS) and Kernel Density Estimation (KDE), based on official data from the National Traffic Agency (ANT) covering the period 2017–2023. Additionally, ARIMA, Prophet, and Long Short-Term Memory (LSTM) models were applied to predict crash occurrences. The most influential contributing factors were driver distraction, excessive speed, and adverse weather. Four main crash hotspots were identified: near Chone (PS 0–2.31), PS 2.31–7.10, PS 13.39–21.31, and PS 31.27–33.92, close to Flavio Alfaro. A total of 55 crashes were recorded, with side impacts (27.3%), pedestrian-related collisions (14.5%), and rear-end crashes (12.7%) being the most frequent types. The predictive models performed well, with Prophet achieving the highest estimated accuracy (90.8%), followed by LSTM (88.2%) and ARIMA (87.6%), based on MAE evaluations. These findings underscore the potential of intelligent transportation systems (ITSs) and predictive analytics to support proactive traffic management and resilient infrastructure development in rural regions.

Suggested Citation

  • Luis Alfonso Moreno-Ponce & Ana María Pérez-Zuriaga & Alfredo García, 2025. "Predictive Models and GIS for Road Safety: Application to a Segment of the Chone–Flavio Alfaro Road," Sustainability, MDPI, vol. 17(11), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5032-:d:1668653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/5032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/5032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuntaporn Klinjun & Matthew Kelly & Chanita Praditsathaporn & Rewwadee Petsirasan, 2021. "Identification of Factors Affecting Road Traffic Injuries Incidence and Severity in Southern Thailand Based on Accident Investigation Reports," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    2. Fabricio Esteban Espinoza-Molina & Christian Fernando Ojeda-Romero & Henry David Zumba-Paucar & Giovanny Pillajo-Quijia & Blanca Arenas-Ramírez & Francisco Aparicio-Izquierdo, 2021. "Road Safety as a Public Health Problem: Case of Ecuador in the Period 2000–2019," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    3. Juan Pablo Montero-Salgado & Jose Muñoz-Sanz & Blanca Arenas-Ramírez & Cristina Alén-Cordero, 2022. "Identification of the Mechanical Failure Factors with Potential Influencing Road Accidents in Ecuador," IJERPH, MDPI, vol. 19(13), pages 1-27, June.
    4. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    5. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    6. Dorota Lasota & Ahmed Al-Wathinani & Paweł Krajewski & Krzysztof Goniewicz & Witold Pawłowski, 2020. "Alcohol and Road Accidents Involving Pedestrians as Unprotected Road Users," IJERPH, MDPI, vol. 17(23), pages 1-11, December.
    7. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Chuangfeng Duan & Min Hu & Haozuan Zhang, 2023. "Comparison of ARIMA and LSTM in Predicting Structural Deformation of Tunnels during Operation Period," Data, MDPI, vol. 8(6), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    2. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    3. Gonca Gürses-Tran & Antonello Monti, 2022. "Advances in Time Series Forecasting Development for Power Systems’ Operation with MLOps," Forecasting, MDPI, vol. 4(2), pages 1-24, May.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Felix Divo & Eric Endress & Kevin Endler & Kristian Kersting & Devendra Singh Dhami, 2024. "Forecasting Company Fundamentals," Papers 2411.05791, arXiv.org, revised Jun 2025.
    6. Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
    7. Saeed Hayati & Kenji Fukumizu & Afshin Parvardeh, 2024. "Kernel mean embedding of probability measures and its applications to functional data analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 447-484, June.
    8. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    9. Luis A Barboza & Shu-Wei Chou-Chen & Paola Vásquez & Yury E García & Juan G Calvo & Hugo G Hidalgo & Fabio Sanchez, 2023. "Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 17(1), pages 1-13, January.
    10. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    11. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    12. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    13. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    14. Jorge-Eusebio Velasco-López & Ramón-Alberto Carrasco & Jesús Serrano-Guerrero & Francisco Chiclana, 2024. "Profiling Social Sentiment in Times of Health Emergencies with Information from Social Networks and Official Statistics," Mathematics, MDPI, vol. 12(6), pages 1-23, March.
    15. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    16. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    18. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    19. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    20. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5032-:d:1668653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.