IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4322-d1652691.html
   My bibliography  Save this article

Characteristics of Changes in Land Use Intensity in Xinjiang Under Different Future Climate Change Scenarios

Author

Listed:
  • Lijie Huang

    (Xinjiang Engineering Technology Research Center of Soil Big Data, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China)

  • Hongqi Wu

    (Xinjiang Engineering Technology Research Center of Soil Big Data, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China)

  • Mingjie Shi

    (Xinjiang Engineering Technology Research Center of Soil Big Data, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China)

  • Jingjing Tian

    (Institute of Natural Resources Planning of the Autonomous Region, Urumqi 830052, China)

  • Kai Zheng

    (Xinjiang Engineering Technology Research Center of Soil Big Data, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China)

  • Tong Dong

    (Key Laboratory of Coastal Science and Integrated Management, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China)

  • Shanshan Wang

    (Xinjiang Engineering Technology Research Center of Soil Big Data, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China)

  • Yunhao Li

    (Xinjiang Engineering Technology Research Center of Soil Big Data, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China)

  • Yuwei Li

    (Xinjiang Engineering Technology Research Center of Soil Big Data, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China)

Abstract

Climate change drives land use intensity changes in Xinjiang, a typical inland arid region. There are relatively few studies on the changes in land use intensity under future climate change. For this purpose, this study adopts the Patch-level Land Use Simulation (PLUS) model and the Markov chain model, combined with shared socioeconomic pathways (SSPs). This study uses the PLUS model to make projections of land use/land cover (LULC) in Xinjiang under different climate scenarios for 2025–2060, constructs a land use intensity atlas to visualize regional spatial patterns, and analyzes the driving factors. The results show that under the SSP126 scenario, the cropland area decreases sharply while the forest, grassland, and water area expand rapidly. However, under the SSP245 and SSP585 scenarios, this trend is obviously reversed; the cropland area expands quickly, and the area of grassland and water decreases. In addition, under the SSP126 scenario, the management and control of LULC are strict, and it may be significantly affected by the conversion of cropland to forest, and the change of forest is relatively active. Under the SSP585 scenario, productivity increases, which may exacerbate the use of constructed land, and the change of constructed land is relatively active. Land use intensity may not significantly promote changes in land type proportions in the region. Population density and GDP are key drivers of land use intensity, showing relatively significant spatial heterogeneity. This study conducts research on the trend of LULC changes under different future climate scenarios, providing data support for the sustainable development of LULC and helping the government formulate different policies to cope with future LULC changes.

Suggested Citation

  • Lijie Huang & Hongqi Wu & Mingjie Shi & Jingjing Tian & Kai Zheng & Tong Dong & Shanshan Wang & Yunhao Li & Yuwei Li, 2025. "Characteristics of Changes in Land Use Intensity in Xinjiang Under Different Future Climate Change Scenarios," Sustainability, MDPI, vol. 17(10), pages 1-28, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4322-:d:1652691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kun Zhou & Xinyi Wang & Zhihan Wang & Yecui Hu, 2022. "Systematicity and Stability Analysis of Land Use Change—Taking Jinan, China, as an Example," Land, MDPI, vol. 11(7), pages 1-18, July.
    2. Chelsea Dandridge & Thomas Stanley & Dalia Kirschbaum & Pukar Amatya & Venkataraman Lakshmi, 2023. "The influence of land use and land cover change on landslide susceptibility in the Lower Mekong River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1499-1523, January.
    3. Melika Mehriar & Houshmand Masoumi & Inmaculada Mohino, 2020. "Urban Sprawl, Socioeconomic Features, and Travel Patterns in Middle East Countries: A Case Study in Iran," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    4. Tianyi Cai & Xueyuan Luo & Liyao Fan & Jing Han & Xinhuan Zhang, 2022. "The Impact of Cropland Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cropland Hotspots in China during 2000–2020," Land, MDPI, vol. 11(12), pages 1-21, December.
    5. Ji Zhang & Pei Zhang & Xinchen Gu & Mingjiang Deng & Xiaoying Lai & Aihua Long & Xiaoya Deng, 2023. "Analysis of Spatio-Temporal Pattern Changes and Driving Forces of Xinjiang Plain Oases Based on Geodetector," Land, MDPI, vol. 12(8), pages 1-15, July.
    6. Yan Sun & Xiaoping Ge & Junna Liu & Yuanyuan Chang & Gang-Jun Liu & Fu Chen, 2021. "Mitigating Spatial Conflict of Land Use for Sustainable Wetlands Landscape in Li-Xia-River Region of Central Jiangsu, China," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    7. Wanxu Chen & Guangqing Chi & Jiangfeng Li, 2020. "Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China," IJERPH, MDPI, vol. 17(10), pages 1-19, May.
    8. Mingjie Shi & Hongqi Wu & Pingan Jiang & Wenjiao Shi & Mo Zhang & Lina Zhang & Haoyu Zhang & Xin Fan & Zhuo Liu & Kai Zheng & Tong Dong & Muhammad Fahad Baqa, 2022. "Cropland Expansion Mitigates the Supply and Demand Deficit for Carbon Sequestration Service under Different Scenarios in the Future—The Case of Xinjiang," Agriculture, MDPI, vol. 12(8), pages 1-18, August.
    9. Siqin Tong & Gang Bao & Ah Rong & Xiaojun Huang & Yongbin Bao & Yuhai Bao, 2020. "Comparison of the Spatiotemporal Dynamics of Land Use Changes in Four Municipalities of China Based on Intensity Analysis," Sustainability, MDPI, vol. 12(9), pages 1-21, May.
    10. Yunfei Ma & Yusuyunjiang Mamitimin & Bahejiayinaer Tiemuerbieke & Rebiya Yimaer & Meiling Huang & Han Chen & Tongtong Tao & Xinyi Guo, 2023. "Spatiotemporal Characteristics and Influencing Factors of Urban Heat Island Based on Geographically Weighted Regression Model: A Case Study of Urumqi City," Land, MDPI, vol. 12(11), pages 1-20, November.
    11. Yu Chen & Mengke Zhu & Qian Zhou & Yurong Qiao, 2021. "Research on Spatiotemporal Differentiation and Influence Mechanism of Urban Resilience in China Based on MGWR Model," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    12. Antonio Tomao & Walter Mattioli & David Fanfani & Carlotta Ferrara & Giovanni Quaranta & Rosanna Salvia & Luca Salvati, 2021. "Economic Downturns and Land-Use Change: A Spatial Analysis of Urban Transformations in Rome (Italy) Using a Geographically Weighted Principal Component Analysis," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    13. Huxiao Zhu & Xiangjun Ou & Zhen Yang & Yiwen Yang & Hongxin Ren & Le Tang, 2022. "Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 11(8), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Houshmand Masoumi, 2021. "Residential Location Choice in Istanbul, Tehran, and Cairo: The Importance of Commuting to Work," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    2. Jiahao Zhai & Chiwei Xiao & Zhiming Feng & Ying Liu, 2022. "Spatio-Temporal Patterns of Land-Use Changes and Conflicts between Cropland and Forest in the Mekong River Basin during 1990–2020," Land, MDPI, vol. 11(6), pages 1-17, June.
    3. Xiaofang Sun & Chao Yu & Junbang Wang & Meng Wang, 2020. "The Intensity Analysis of Production Living Ecological Land in Shandong Province, China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    4. Wei Xu & Yuqi Miao & Shuaimeng Zhu & Jimin Cheng & Jingwei Jin, 2023. "Modelling the Geographical Distribution Pattern of Apple Trees on the Loess Plateau, China," Agriculture, MDPI, vol. 13(2), pages 1-14, January.
    5. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    6. Zhang Zhang & Huimin Zhou & Shuxian Li & Zhibin Zhao & Junbo Xu & Yuansuo Zhang, 2024. "Study on the Spatiotemporal Evolution of Urban Land Use Efficiency in the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 16(7), pages 1-27, April.
    7. Jianhui Dong & Wenju Yun & Kening Wu & Shaoshuai Li & Bingrui Liu & Qiaoyuan Lu, 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China," Land, MDPI, vol. 12(2), pages 1-22, February.
    8. D'Agata, Alessia & Alaimo, Leonardo Salvatore & Cudlín, Pavel & Salvati, Luca, 2023. "Easy come, easy go: Short-term land-use dynamics vis à vis regional economic downturns," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    9. Rastko Jovanović & Miloš Davidović & Ivan Lazović & Maja Jovanović & Milena Jovašević-Stojanović, 2021. "Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    10. Wei Jiang & Ke-Liang Wang & Zhuang Miao, 2025. "Can telecommunications infrastructure enhance urban resilience? Empirical evidence from a differences-in-differences approach in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 2379-2410, January.
    11. Jie Huang & Zimin Sun & Minzhe Du, 2022. "Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China," Land, MDPI, vol. 11(9), pages 1-18, September.
    12. Guoqing Cui & Wenlong Zheng & Siliang Chen & Yue Dong & Tingyu Huang, 2022. "Study on the Spatial Pattern Characteristics and Influencing Factors of Inefficient Urban Land Use in the Yellow River Basin," Land, MDPI, vol. 11(9), pages 1-24, September.
    13. János Pénzes & László Dávid Hegedűs & Kanat Makhanov & Zoltán Túri, 2023. "Changes in the Patterns of Population Distribution and Built-Up Areas of the Rural–Urban Fringe in Post-Socialist Context—A Central European Case Study," Land, MDPI, vol. 12(9), pages 1-20, August.
    14. Alexey A. Mironenkov & Alexey N. Kurbatskii & Marina V. Mironenkova, 2024. "The Quality-of-Life Measurement with a Stochastic Choice of Parameters of the Weighted Principal Component," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(1), pages 82-109.
    15. Yuqing Zhao & Zenglin Han & Xiaolu Yan & Xuezhe Wang, 2022. "Integrating Spatial Heterogeneity into an Analysis between Ecosystem Service Value and Its Driving Factors: A Case Study of Dalian, China," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    16. Damien Sinonmatohou Tiando & Shougeng Hu & Xin Fan & Muhammad Rashid Ali, 2021. "Tropical Coastal Land-Use and Land Cover Changes Impact on Ecosystem Service Value during Rapid Urbanization of Benin, West Africa," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    17. Hadi Alizadeh & Abolfazl Meshkini, 2025. "On the road to urban sustainability: identifying major barriers to urban sustainability in Iran," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 45(2), pages 351-376, June.
    18. Chao Wang & Jianing Wang & Le Ma & Mingming Jia & Jiaying Chen & Zhenfeng Shao & Nengcheng Chen, 2024. "Prediction Modeling and Driving Factor Analysis of Spatial Distribution of CO 2 Emissions from Urban Land in the Yangtze River Economic Belt, China," Land, MDPI, vol. 13(9), pages 1-21, September.
    19. Zhenwei Wang & Jinjin Mao & Yelin Peng & Jiahui Wu & Xiaochun Wang & Lilan Su, 2025. "Exploring the Driving Forces of Ecosystem Services in the Yangtze River Basin, China," Land, MDPI, vol. 14(2), pages 1-16, February.
    20. Yajun Ma & Ping Zhang & Kaixu Zhao & Yong Zhou & Sidong Zhao, 2022. "A Dynamic Performance and Differentiation Management Policy for Urban Construction Land Use Change in Gansu, China," Land, MDPI, vol. 11(6), pages 1-31, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4322-:d:1652691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.